Angelos-Aristeidis Konstas

Learn More
Restoration of blood flow following ischemic stroke can be achieved by means of thrombolysis or mechanical recanalization. However, for some patients, reperfusion may exacerbate the injury initially caused by ischemia, producing a so-called “cerebral reperfusion injury”. Multiple pathological processes are involved in this injury, including leukocyte(More)
A three-dimensional mathematical model was developed to examine the induction of selective brain cooling (SBC) in the human brain by intracarotid cold (2.8 degrees C) saline infusion (ICSI) at 30 ml/min. The Pennes bioheat equation was used to propagate brain temperature. The effect of cooled jugular venous return was investigated, along with the effect of(More)
The development of animal models of acute stroke has allowed the evaluation of mild and moderate hypothermia as a therapeutic modality in this clinical setting. Studies have demonstrated that animals subjected to hypothermia up to 3 hours after the primary central nervous system insult have reduced mortality and neuronal injury, and improved neurological(More)
Intracarotid cold saline infusion (ICSI) is potentially much faster than whole-body cooling and more effective than cooling caps in inducing therapeutic brain cooling. One drawback of ICSI is hemodilution and volume loading. We hypothesized that cooling caps could enhance brain cooling with ICSI and minimize hemodilution and volume loading. Six-hour-long(More)
A three-dimensional mathematical model was developed to examine the transient and steady-state temperature distribution in the human brain during selective brain cooling (SBC) by unilateral intracarotid freezing-cold saline infusion. To determine the combined effect of hemodilution and hypothermia from the cold saline infusion, data from studies(More)
  • 1