Learn More
Transformed stem cells have been isolated from some human cancers. We report that, unlike other brain cancers, the lethal glioblastoma multiforme contains neural precursors endowed with all of the critical features expected from neural stem cells. Similar, yet not identical, to their normal neural stem cell counterpart, these precursors emerge as unipotent(More)
Widespread demyelination and axonal loss are the pathological hallmarks of multiple sclerosis. The multifocal nature of this chronic inflammatory disease of the central nervous system complicates cellular therapy and puts emphasis on both the donor cell origin and the route of cell transplantation. We established syngenic adult neural stem cell cultures and(More)
Astrocytes actively participate in synaptic integration by releasing transmitter (glutamate) via a calcium-regulated, exocytosis-like process. Here we show that this process follows activation of the receptor CXCR4 by the chemokine stromal cell-derived factor 1 (SDF-1). An extraordinary feature of the ensuing signaling cascade is the rapid extracellular(More)
Sox2 is one of the earliest known transcription factors expressed in the developing neural tube. Although it is expressed throughout the early neuroepithelium, we show that its later expression must depend on the activity of more than one regionally restricted enhancer element. Thus, by using transgenic assays and by homologous recombination-mediated(More)
The subventricular zone (SVZ) of the adult mammalian forebrain contains kinetically distinct precursor populations that contribute new neurons to the olfactory bulb. Because among forebrain precursors there are stem-like cells that can be cultured in the presence of mitogens such as epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2), we(More)
It has been established that the adult mouse forebrain contains multipotential (neuronal/glial) progenitor cells that can be induced to proliferate in vitro when epidermal growth factor is provided. These cells are found within the subventricular zone of the lateral ventricles, together with other progenitor cell populations, whose requirements for(More)
The lateral walls of the forebrain lateral ventricles are the richest source of stem cells in the adult mammalian brain. These stem cells give rise to new olfactory neurons that are renewed throughout life. The neurons originate in the subventricular zone (SVZ), migrate within the rostral extension (RE) of the SVZ along the rostral migratory stream (RMS)(More)
The ready availability of unlimited quantities of neural stem cells derived from the human brain holds great interest for basic and applied neuroscience, including therapeutic cell replacement and gene transfer following transplantation. We report here the combination of epigenetic and genetic procedures for perpetuating human neural stem cell lines. Thus(More)
Transformed, oncogenic precursors, possessing both defining neural-stem-cell properties and the ability to initiate intracerebral tumours, have been identified in human brain cancers. Here we report that bone morphogenetic proteins (BMPs), amongst which BMP4 elicits the strongest effect, trigger a significant reduction in the stem-like, tumour-initiating(More)
The dogma that the genesis of new cells is a negligible event in the adult mammalian brain has long influenced our perception and understanding of the origin and development of CNS tumours. The discovery that new neurons and glia are produced throughout life from neural stem cells provides new possibilities for the candidate cells of origin of CNS(More)