Angelo Iulianella

Learn More
Embryonic cortical neural stem cells are self-renewing progenitors that can differentiate into neurons and glia. We generated neurospheres from the developing cerebral cortex using a mouse genetic model that allows for lineage selection and found that the self-renewing neural stem cells are restricted to Sox2 expressing cells. Under normal conditions,(More)
Neurogenesis requires the coordination of neural progenitor proliferation and differentiation with cell-cycle regulation. However, the mechanisms coordinating these distinct cellular activities are poorly understood. Here we demonstrate for the first time that a Cut-like homeodomain transcription factor family member, Cux2 (Cutl2), regulates cell-cycle(More)
Obtaining the diversity of interneuron subtypes in their appropriate numbers requires the orchestrated integration of progenitor proliferation with the regulation of differentiation. Here we demonstrate through loss-of-function studies in mice that the Cut homeodomain transcription factor Cux2 (Cutl2) plays an important role in regulating the formation of(More)
Holoprosencephaly (HPE) is a failure of the forebrain to bifurcate and is the most common structural malformation of the embryonic brain. Mutations in SHH underlie most familial (17%) cases of HPE; and, consistent with this, Shh is expressed in midline embryonic cells and tissues and their derivatives that are affected in HPE. It has long been recognized(More)
The formation of the central nervous system is one of the most fascinating processes in biology. Motor coordination, sensory perception and memory all depend on the complex cell connections that form with extraordinary precision between distinct nerve cell types within the central nervous system. The development of the central nervous system and its(More)
Cranial nerves govern sensory and motor information exchange between the brain and tissues of the head and neck. The cranial nerves are derived from two specialized populations of cells, cranial neural crest cells and ectodermal placode cells. Defects in either cell type can result in cranial nerve developmental defects. Although several signaling pathways(More)
  • 1