Angelo Iulianella

Learn More
Retinoic acid (RA) is required for diverse developmental programs, including vertebral specification. Both RA receptor disruption and excess RA result in homeotic transformations of the axial skeleton. These effects are believed to occur through altered expression of Hox genes, several of which have been demonstrated to be direct RA targets. Members of the(More)
Dietary deprivation and gene disruption studies clearly demonstrate that biologically active retinoids, such as retinoic acid (RA), are essential for numerous developmental programs. Similar ontogenic processes are also affected by retinoic acid excess, suggesting that the effects of retinoid administration reflect normal retinoid-dependent events. In the(More)
Exogenous retinoic acid (RA) administered during mouse embryogenesis can alter the pattern of the axial skeleton during two developmental periods: an early window (7 to 8.5 days post-coitum; dpc) and a late window (9.5 to 11.5 dpc). Treatment during the early window results in vertebral homeotic transformations (predominantly posteriorizations) concomitant(More)
Cleft lip, which results from impaired facial process growth and fusion, is one of the most common craniofacial birth defects. Many genes are known to be involved in the etiology of this disorder; however, our understanding of cleft lip pathogenesis remains incomplete. In the present study, we uncovered a role for sonic hedgehog (SHH) signaling during lip(More)
Neurogenesis requires the coordination of neural progenitor proliferation and differentiation with cell-cycle regulation. However, the mechanisms coordinating these distinct cellular activities are poorly understood. Here we demonstrate for the first time that a Cut-like homeodomain transcription factor family member, Cux2 (Cutl2), regulates cell-cycle(More)
The formation of the central nervous system is one of the most fascinating processes in biology. Motor coordination, sensory perception and memory all depend on the complex cell connections that form with extraordinary precision between distinct nerve cell types within the central nervous system. The development of the central nervous system and its(More)
Myeloid/lymphoid or mixed-lineage leukemia; translocated to chromosome 11 or ALL1 fused from chromosome 1q (MLLT11/AF1q) is a highly conserved 90 amino acid protein that functions in hematopoietic differentiation. Its translocation to the Trithorax locus has been implicated in malignancies of the hematopoietic system. However, the spatio-temporal profile of(More)
Holoprosencephaly (HPE) is a failure of the forebrain to bifurcate and is the most common structural malformation of the embryonic brain. Mutations in SHH underlie most familial (17%) cases of HPE; and, consistent with this, Shh is expressed in midline embryonic cells and tissues and their derivatives that are affected in HPE. It has long been recognized(More)
Embryonic cortical neural stem cells are self-renewing progenitors that can differentiate into neurons and glia. We generated neurospheres from the developing cerebral cortex using a mouse genetic model that allows for lineage selection and found that the self-renewing neural stem cells are restricted to Sox2 expressing cells. Under normal conditions,(More)
CDP/Cut homeodomain factors are a divergent group of transcriptional repressors that are conserved during metazoan evolution. The cut locus of Drosophila is required for external sensory organ development and dorso-ventral boundary formation in the wing. In vertebrates, two CDP/Cut genes have been identified, Cux1 and Cux2. While Cux1 is widely expressed in(More)