Angelo H. All

Learn More
BACKGROUND Cells of the oligodendrocyte (OL) lineage play a vital role in the production and maintenance of myelin, a multilamellar membrane which allows for saltatory conduction along axons. These cells may provide immense therapeutic potential for lost sensory and motor function in demyelinating conditions, such as spinal cord injury, multiple sclerosis,(More)
This study utilized a contusion model of spinal cord injury (SCI) in rats using the standardized NYU-MASCIS impactor, after which oligodendrocyte progenitor cells (OPCs) derived from human embryonic stem cell (ESC) were transplanted into the spinal cord to study their survival and migration route toward the areas of injury. One critical aspect of successful(More)
Human embryonic germ cells (EGCs) provide a powerful model for identifying molecules involved in the pluripotent state when compared to their progenitors, primordial germ cells (PGCs), and other pluripotent stem cells. Microarray and Principal Component Analysis (PCA) reveals for the first time that human EGCs possess a transcription profile distinct from(More)
STUDY DESIGN Electrophysiological analysis using somatosensory-evoked potentials (SEPs) and behavioral assessment using Basso, Beattie, Bresnahan (BBB) scale were compared over time for graded Multicenter Animal Spinal Cord Injury Study (MASCIS) contusion spinal cord injury (SCI). OBJECTIVE To study the SEP responses across different contusion injury(More)
In this paper, spectral coherence (SC) is used to study the somatosensory evoked potential (SEP) signals in rodent model before and after spinal cord injury (SCI). The SC technique is complemented with the Basso, Beattie, and Bresnahan (BBB) behavior analysis method to help us assess the status of the motor recovery. SC can be used to follow the effects of(More)
OBJECTIVE Neuroprotection by hypothermia has been an important research topic over last two decades. In animal models of spinal cord injury, the primary focus has been assessing the effects of hypothermia on behavioral and histologic outcomes. Although a few studies have investigated electrophysiological changes in descending motor pathways with(More)
We describe the feasibility of using diffusion tensor magnetic resonance imaging (DT-MRI) to study a contusive model of rat spinal cord injury following human stem cell transplantation at and around the site of injury. Rats receiving either a laminectomy or contusion injury were transplanted with oligodendrocyte precursor cells (OPCs). During the course of(More)
Hypothermia is known to be neuroprotective and is one of the most effective and promising first-line treatments for central nervous system (CNS) trauma. At present, induction of local hypothermia, as opposed to general hypothermia, is more desired because of its ease of application and safety; fewer side effects and an absence of severe complications have(More)
Transplantation of glial progenitor cells results in transplant-derived myelination and improved function in rodents with genetic dysmyelination or chemical demyelination. However, glial cell transplantation in adult CNS inflammatory demyelinating models has not been well studied. Here we transplanted human glial-restricted progenitor (hGRP) cells into the(More)
Oligodendrocytes (OLs) are glial cells of the central nervous system, which produce myelin. Cultured OLs provide immense therapeutic opportunities for treating a variety of neurological conditions. One of the most promising sources for such therapies is human embryonic stem cells (ESCs) as well as providing a model to study human OL development. For these(More)