Angelique C. J. Ziel-van der Made

Learn More
The PTEN tumor suppressor gene is frequently inactivated in human tumors, including prostate cancer. Based on the Cre/loxP system, we generated a novel mouse prostate cancer model by targeted inactivation of the Pten gene. In this model, Cre recombinase was expressed under the control of the prostate-specific antigen (PSA) promoter. Conditional biallelic(More)
Molecular classification of ERG-rearranged prostate cancer clarifies the role of TMPRSS2-ERG in the development and progression of prostate cancer. The objective of our study was to identify direct ERG target genes in ERG-rearranged prostate cancer. Two independent cohorts of primary prostate cancer (Cohort A, n=48; Cohort B, n=31), a cohort of late-stage(More)
We characterized the specifically androgen-regulated gene (SARG), which is expressed in the androgen receptor (AR) and glucocorticoid receptor (GR) positive cell line lymph node carcinoma of the prostate-1F5 (LNCaP-1F5). SARG mRNA expression can be up-regulated by androgens, but not by glucocorticoids. SARG mRNA expression is high in prostate tissue. SARG(More)
The PSA-Cre;Pten-loxP/loxP mouse prostate cancer model displays clearly defined stages of hyperplasia and cancer. Here, the initial stages of hyperplasia development are studied. Immunohistochemical staining showed that accumulated pAkt+ hyperplastic cells overexpress luminal epithelial cell marker CK8, and progenitor cell markers CK19 and Sca-1, but not(More)
Among nuclear receptors, the androgen receptor (AR) is unique in that its ligand-binding domain (LBD) interacts with the FXXLF motif in the N-terminal domain, resembling coactivator LXXLL motifs. We compared AR- and estrogen receptor alpha-LBD interactions of the wild-type AR FXXLF motif and coactivator transcriptional intermediary factor 2 LXXLL motifs and(More)
In this study, we describe the properties of novel ETV1 fusion genes, encoding N-truncated ETV1 (dETV1), and of full-length ETV1, overexpressed in clinical prostate cancer. We detected overexpression of novel ETV1 fusion genes or of full-length ETV1 in 10% of prostate cancers. Novel ETV1 fusion partners included FOXP1, an EST (EST14), and an endogenous(More)
BACKGROUND The tumor suppressor PTEN regulates many biological processes. A well-known downstream effector of PTEN is phospho-Akt. Although PTEN is the most frequently inactivated gene in prostate cancer, its mode of action is not fully understood. We studied the association of regulated PTEN expression with changes in biological function and gene(More)
Phaeochromocytomas (PCCs) are neuro-endocrine tumours of the adrenal medulla that are usually benign, but approximately 10% of patients develop metastases. Malignant PCCs can only be diagnosed with certainty if metastases are present. Here we describe adrenal tumours generated in a Pten conditional knock-out (KO) mouse model. We characterized the molecular(More)
In a subset of endocrine therapy-resistant prostate cancers, amino acid substitutions H874Y, T877A and T877S, which broaden ligand specificity of the ligand binding domain (LBD) of the androgen receptor (AR), have been detected. To increase our knowledge of the role of amino acid substitutions at these specific positions in prostate cancer, codons 874 and(More)
BACKGROUND The phosphatidylinositol 3-kinase (PI3K)-AKT pathway is activated in many cancers. Mutational hotspots in AKT1 and in the regulatory and catalytic subunits of PI3K have been detected in multiple tumour types. In AKT1, the E17K substitution leads to a PI3K-independent activation of AKT1. METHODS A mutational profiling of AKT1 and of the(More)