Learn More
The Drosophila gene pointed (pnt) encodes two putative transcription factors (P1 and P2) of the Ets family, which in the embryonic CNS are found exclusively in glial cells. Loss of pnt function leads to poorly differentiated glial cells and a marked decrease in the expression of the neuronal antigen 22C10 in the MP2 neurons, which are known to interact(More)
Within euarthropods, the morphological and molecular mechanisms of early nervous system development have been analysed in insects and several representatives of chelicerates and myriapods, while data on crustaceans are fragmentary. Neural stem cells (neuroblasts) generate the nervous system in insects and in higher crustaceans (malacostracans); in the(More)
In a recent comparative study on neurogenesis in the diplopod Glomeris marginata we have shown that the millipede and the spider share several features that cannot be found in homologous form in insects and crustaceans. The most distinctive difference is that groups of neural precursors are singled out from the neuroectoderm of the spider and the diplopod,(More)
In Drosophila, glial cell development depends on the gene glial cells missing (gcm). gcm activates the expression of other transcription factors such as pointed and repo, which control subsequent glial differentiation. In order to better understand glial cell differentiation, we have screened for genes whose expression in glial cells depends on the activity(More)
It is currently debated whether segmentation in different animal phyla has a common origin and shares a common genetic mechanism. The apparent use of different genetic networks in arthropods and vertebrates has become a strong argument against a common origin of segmentation. Our knowledge of arthropod segmentation is based mainly on the insect Drosophila,(More)
The genetic regulatory networks controlling major developmental processes seem to be conserved in bilaterians regardless of an independent or a common origin of the structures. This has been explained by the employment of a genetic toolkit that was repeatedly used during bilaterian evolution to build the various forms and body plans. However, it is not(More)
Molecular data suggest that myriapods are a basal arthropod group and may even be the sister group of chelicerates. To find morphological indications for this relationship we have analysed neurogenesis in the myriapod Glomeris marginata (Diplopoda). We show here that groups of neural precursors, rather than single cells as in insects, invaginate from the(More)
Ten years ago we showed for the first time that Notch signalling is required in segmentation in spiders, indicating the existence of similar mechanisms in arthropod and vertebrate segmentation. However, conflicting results in various arthropod groups hampered our understanding of the ancestral function of Notch in arthropod segmentation. Here we fill a(More)
The phylogenetic position of onychophorans is still being debated; however, most phylogenies suggest that onychophorans are a sister group to the arthropods. Here we have analysed neurogenesis in the brain of the onychophoran Euperipatoides kanangrensis. We show that the development of the onychophoran brain is considerably different from arthropods. Neural(More)