Learn More
The role of glutamine and alanine transport in the recycling of neurotransmitter glutamate was investigated in Guinea pig brain cortical tissue slices and prisms, and in cultured neuroblastoma and astrocyte cell lines. The ability of exogenous (2 mm) glutamine to displace 13C label supplied as [3-13C]pyruvate, [2-13C]acetate, l-[3-13C]lactate, or(More)
Transfer of glutamine between astrocytes and neurons is an essential part of the glutamate-glutamine cycle in the brain. Here we have investigated how the neural glutamine transporter (rATA1/GlnT) works. Rat ATA1 was expressed in Xenopus laevis oocytes and examined using two-electrode voltage-clamp recordings, ion-sensitive microelectrodes and tracer flux(More)
The neutral amino acid transporter ASCT2 mediates electroneutral obligatory antiport but at the same time requires Na(+) for its function. To elucidate the mechanism, ASCT2 was expressed in Xenopus laevis oocytes and transport was analysed by flux studies and two-electrode voltage clamp recordings. Flux studies with (22)NaCl indicated that the uptake of one(More)
Metabolism of short-chain fatty acids (SCFA) in the brain, particularly that of acetate, appears to occur mainly in astrocytes. The differential use has been attributed to transport, but the extent to which transmembrane movement of SCFA is mediated by transporters has not been investigated systematically. Here we tested the possible contribution of(More)
As the malaria parasite, Plasmodium falciparum, grows within its host erythrocyte it induces an increase in the permeability of the erythrocyte membrane to a range of low-molecular-mass solutes, including Na+ and K+ (ref. 1). This results in a progressive increase in the concentration of Na+ in the erythrocyte cytosol. The parasite cytosol has a relatively(More)
Enterocytes are specialized to absorb nutrients from the lumen of the small intestine by expressing a select set of genes to maximize the uptake of nutrients. They develop from stem cells in the crypt and differentiate into mature enterocytes while moving along the crypt-villus axis. Using the Slc6a19 gene as an example, encoding the neutral amino acid(More)
The mechanism of the mouse (m)B0AT1 (slc6a19) transporter was studied in detail using two electrode voltage-clamp techniques and tracer studies in the Xenopus oocyte expression system. All neutral amino acids induced inward currents at physiological potentials, but large neutral non-aromatic amino acids were the preferred substrates of mB0AT1. Substrates(More)
The brush-border membrane of the small intestine and kidney proximal tubule are the major sites for the absorption and re-absorption of nutrients in the body respectively. Transport of amino acids is mediated through the action of numerous secondary active transporters. In the mouse, neutral amino acids are transported by B(0)AT1 [broad neutral ((0)) amino(More)
The glutamine transporter SNAT3 (SLC38A3, former SN1) plays a major role in glutamine release from brain astrocytes and in glutamine uptake into hepatocytes and kidney epithelial cells. Here we expressed rat SNAT3 in oocytes of Xenopus laevis and reinvestigated its transport modes using two-electrode voltage clamp and pH-sensitive microelectrodes. In(More)
Brain glutamate/glutamine cycling is incomplete without return of ammonia to glial cells. Previous studies suggest that alanine is an important carrier for ammonia transfer. In this study, we investigated alanine transport and metabolism in Guinea pig brain cortical tissue slices and prisms, in primary cultures of neurons and astrocytes, and in(More)