Angela V. Smirnova

Learn More
Aerobic methanotrophic bacteria consume methane as it diffuses away from methanogenic zones of soil and sediment. They act as a biofilter to reduce methane emissions to the atmosphere, and they are therefore targets in strategies to combat global climate change. No cultured methanotroph grows optimally below pH 5, but some environments with active methane(More)
We examined bacterial diversity of three geothermal soils in the Taupo Volcanic Zone of New Zealand. Phylogenetic analysis of 16S rRNA genes recovered directly from soils indicated that the bacterial communities differed in composition and richness, and were dominated by previously uncultured species of the phyla Actinobacteria, Acidobacteria, Chloroflexi,(More)
The phylum Verrucomicrobia is a widespread but poorly characterized bacterial clade. Although cultivation-independent approaches detect representatives of this phylum in a wide range of environments, including soils, seawater, hot springs and human gastrointestinal tract, only few have been isolated in pure culture. We have recently reported cultivation and(More)
Pathogenic bacteria with habitats inside and outside a given host react to changes in environmental parameters by synthesizing gene products specifically needed during pathogenic or saprophytic growth. Temperature effects have been investigated in detail for pathogens of warm-blooded hosts, and major principles governing the temperature-sensing mechanism(More)
The influence of anion channel blockers NPPB and DIDS on pollen tube growth and its mitochondria functioning was studied by means of fluorescence microscopy and flow cytometry. NPPB (40 μM) blocked pollen tube growth completely, but didn’t change its diameter. DIDS (20–80 μM) caused pollen tube swelling and bursting, suggesting that DIDS-sensitive channels(More)
Recently, methanotrophic members of the phylum Verrucomicrobia have been described, but little is known about their distribution in nature. We surveyed methanotrophic bacteria in geothermal springs and acidic wetlands via pyrosequencing of 16S rRNA gene amplicons. Putative methanotrophic Verrucomicrobia were found in samples covering a broad temperature(More)
Using methods of quantitative fluorescent microscopy, we studied membrane potential changes during pollen germination and in growing pollen tubes. Two voltage-sensitive dyes were used, i.e., DiBAC4(3), to determine the mean membrane potential values in pollen grains and isolated protoplasts, and Di-4-ANEPPS, to map the membrane potential distribution on the(More)
The alphaproteobacterial family Beijerinckiaceae contains generalists that grow on a wide range of substrates, and specialists that grow only on methane and methanol. We investigated the evolution of this family by comparing the genomes of the generalist organotroph Beijerinckia indica, the facultative methanotroph Methylocella silvestris and the obligate(More)
The formation of reactive oxygen species in pollen at the early germination stage, which precedes the formation of the pollen tube, was studied. During this period, pollen grain is being hydrated, abruptly increasing its volume, and it passes from the resting state to active metabolism. Fluorescent methods have made it possible to reveal reactive oxygen(More)
Changes in the composition of ionogenic groups of the polymeric matrix of the cell walls of lily (Lilium longiflorum Thunb.) pollen grains were studied during its activation at the early stages of pollen germination. In the cell walls isolated from nonactivated and activated pollen grains, four types of ionogenic groups were identified: amino groups,(More)