Angela M. Jablonski

Learn More
Activation of AMPA receptors assembled with the GluA1 subunit can promote dendrite growth in a manner that depends on its direct binding partner, SAP97. SAP97 is a modular scaffolding protein that has at least seven recognizable protein-protein interaction domains. Several complementary approaches were employed to show that the dendrite branching promoting(More)
The neuronal dendritic tree is a key determinant of how neurons receive, compute, and transmit information. During early postnatal life, synaptic activity promotes dendrite elaboration. Spinal motor neurons utilize GluA1-containing AMPA (2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid) receptors (AMPA-R) to control this process. This form of(More)
Protein quality control is essential for clearing misfolded and aggregated proteins from the cell, and its failure is associated with many neurodegenerative disorders. Here, we identify two genes, ufd-2 and spr-5, that when inactivated, synergistically and robustly suppress neurotoxicity associated with misfolded proteins in Caenorhabditis elegans. Loss of(More)
UNLABELLED Misfolded proteins accumulate and aggregate in neurodegenerative disease. The existence of these deposits reflects a derangement in the protein homeostasis machinery. Using a candidate gene screen, we report that loss of RAD-23 protects against the toxicity of proteins known to aggregate in amyotrophic lateral sclerosis. Loss of RAD-23 suppresses(More)
Hypoxic brain injury remains a major source of neurodevelopmental impairment for both term and preterm infants. The perinatal period is a time of rapid transition in oxygen environments and developmental resetting of oxygen sensing. The relationship between neural oxygen sensing ability and hypoxic injury has not been studied. The oxygen sensing circuitry(More)
  • 1