Learn More
Uncertainty in various forms plagues our interactions with the environment. In a Bayesian statistical framework, optimal inference and prediction, based on unreliable observations in changing contexts, require the representation and manipulation of different forms of uncertainty. We propose that the neuromodulators acetylcholine and norepinephrine play a(More)
Many large and small decisions we make in our daily lives-which ice cream to choose, what research projects to pursue, which partner to marry-require an exploration of alternatives before committing to and exploiting the benefits of a particular choice. Furthermore, many decisions require re-evaluation, and further exploration of alternatives, in the face(More)
We study the synthesis of neural coding, selective attention and perceptual decision making. A hierarchical neural architecture is proposed, which implements Bayesian integration of noisy sensory input and top-down attentional priors, leading to sound perceptual discrimination. The model offers an explicit explanation for the experimentally observed(More)
Visual processing in the cortex can be characterized by a predominantly hierarchical architecture, in which specialized brain regions along the processing pathways extract visual features of increasing complexity, accompanied by greater invariance in stimulus properties such as size and position. Various studies have postulated that a nonlinear pooling(More)
The brain exhibits remarkable facility in exerting attentional control in most circumstances, but it also suffers apparent limitations in others. The authors' goal is to construct a rational account for why attentional control appears suboptimal under conditions of conflict and what this implies about the underlying computational principles. The formal(More)
The dorsal anterior cingulate cortex (dACC) has been implicated in a variety of cognitive control functions, among them the monitoring of conflict, error, and volatility, error anticipation, reward learning, and reward prediction errors. In this work, we used a Bayesian ideal observer model, which predicts trial-by-trial probabilistic expectation of stop(More)
Acetylcholine (ACh) plays an important role in a wide variety of cognitive tasks, such as perception, selective attention, associative learning, and memory. Extensive experimental and theoretical work in tasks involving learning and memory has suggested that ACh reports on unfamiliarity and controls plasticity and effective network connectivity. Based on(More)
Extensive animal studies indicate that the neuromodulator norepinephrine plays an important role in specific aspects of vigilance, attention and learning, putatively serving as a neural interrupt or reset function. The activity of norepinephrine-releasing neurons in the locus coeruleus during attentional tasks is modulated not only by the animal's level of(More)