Angela J McArthur

Learn More
Nocturnal synthesis of the pineal hormone melatonin (MEL) is regulated by the circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus. We examined the hypothesis that MEL can feed back to regulate the SCN using a brain slice preparation from rat. We monitored the SCN ensemble firing rate and found that MEL advanced the time of peak firing(More)
The main mammalian circadian pacemaker is located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Gastrin-releasing peptide (GRP) and its receptor (BB(2)) are synthesized by rodent SCN neurons, but the role of GRP in circadian rhythm processes is unknown. In this study, we examined the phase-resetting actions of GRP on the electrical activity(More)
The environmental photoperiod regulates the synthesis of melatonin by the pineal gland, which in turn induces daily and seasonal adjustments in behavioral and physiological state. The mechanisms by which melatonin mediates these effects are not known, but accumulating data suggest that melatonin modulates a circadian biological clock, either directly or(More)
The basis of the decline in circadian rhythms with aging was addressed by comparing the patterns of three behavioral rhythms in young and old rats with the in vitro rhythm of neuronal activity in the suprachiasmatic nuclei (SCN), the primary circadian pacemaker. In some old rats, rhythms of body temperature, drinking, and activity retained significant 24-h(More)
The role of membrane integrity and the membrane ATPase in the mechanism of thermotolerance in Saccharomyces cerevisiae was investigated. The resistance to lethal heat of a mutant strain with reduced expression of the membrane ATPase was significantly less than that of the wild-type parent. However, prior exposure to sub-lethal temperatures resulted in the(More)
The suprachiasmatic nuclei (SCN) of mammals contain a circadian clock that synchronizes behavioral and physiological rhythms to the daily cycle of light and darkness. We have been probing the biochemical substrates of this endogenous pacemaker by examining the ability of treatments affecting cyclic nucleotide-dependent pathways to induce changes in the(More)
The central role of the suprachiasmatic nuclei in regulating mammalian circadian rhythms is well established. We study the temporal organization of neuronal properties in the suprachiasmatic nucleus (SCN) using a rat hypothalamic brain slice preparation. Electrical properties of single neurons are monitored by extra-cellular and whole-cell patch recording(More)
We have characterized a cold-induced, boiling stable antifreeze protein. This highly active ice recrystallization inhibition protein shows a much lower thermal hysteresis effect and displays binding behavior that is uncharacteristic of any AFP from fish or insects. Ice-binding studies show it binds to the (1 0 1 0) plane of ice and FTIR studies reveal that(More)
The biological clock in the suprachiasmatic nucleus (SCN) of the hypothalamus plays a well-defined role in regulating melatonin production by the pineal. Emerging evidence indicates that melatonin itself can feed back upon the SCN and thereby influence circadian functions. Melatonin administration has been shown to entrain activity rhythms in rodents and(More)