Angela G. Fleischman

Learn More
BACKGROUND The molecular causes of many hematologic cancers remain unclear. Among these cancers are chronic neutrophilic leukemia (CNL) and atypical (BCR-ABL1-negative) chronic myeloid leukemia (CML), both of which are diagnosed on the basis of neoplastic expansion of granulocytic cells and exclusion of genetic drivers that are known to occur in other(More)
Proinflammatory cytokines such as TNFα are elevated in patients with myeloproliferative neoplasms (MPN), but their contribution to disease pathogenesis is unknown. Here we reveal a central role for TNFα in promoting clonal dominance of JAK2(V617F) expressing cells in MPN. We show that JAK2(V617F) kinase regulates TNFα expression in cell lines and primary(More)
UNLABELLED Targeted molecular therapy has yielded remarkable outcomes in certain cancers, but specific therapeutic targets remain elusive for many others. As a result of two independent RNA interference (RNAi) screens, we identified pathway dependence on a member of the Janus-activated kinase (JAK) tyrosine kinase family, TYK2, and its downstream effector(More)
We have recently identified targetable mutations in CSF3R (GCSFR) in 60% of chronic neutrophilic leukemia (CNL) and atypical (BCR-ABL-negative) chronic myeloid leukemia (aCML) patients. Here we demonstrate that the most prevalent, activating mutation, CSF3R T618I, is sufficient to drive a lethal myeloproliferative disorder in a murine bone marrow(More)
The relative risk of clonal evolution to either myelodysplasia (MDS) or acute myelogenous leukemia (AML) is high in patients with chronic bone marrow failure. From 10 to 20% of acquired aplastic anemia survivors will develop clonal evolution within the decade following their diagnosis as will 40% of patients with some of the inherited bone marrow failure(More)
Sequestration in the bone marrow niche may allow leukemic stem cells to evade exposure to drugs. Because the CXCR4/SDF-1 axis is an important mechanism of leukemic stem cell interaction with marrow stroma, we tested whether plerixafor, an antagonist of CXCR4, may dislodge chronic myeloid leukemia (CML) cells from the niche, sensitizing them to tyrosine(More)
In this issue of Blood,Gerber et al use aldehyde dehydrogenase (ALDH) activity to further subdivide the CD34(+)CD38(-) compartment in the bone marrow of acute myeloid leukemia (AML) patients. They identify a unique population with intermediate ALDH activity (ALDH(int)) that contains leukemia stem cells (LSCs). Moreover, persistence of this population after(More)
Recent studies have revealed that p27, a nuclear cyclin-dependent kinase (Cdk) inhibitor and tumor suppressor, can acquire oncogenic activities upon mislocalization to the cytoplasm. To understand how these antagonistic activities influence oncogenesis, we dissected the nuclear and cytoplasmic functions of p27 in chronic myeloid leukemia (CML), a(More)
1Division of Hematology and Medical Oncology, Oregon Health & Science University (OHSU) Knight Cancer Institute, Portland, OR; 2Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; 3Division of Pediatric Hematology and Oncology, Department of Pediatrics, OHSU, Portland, OR; 4Department(More)