Angela F Dulhunty

Learn More
The gating of ryanodine receptor calcium release channels (RyRs) depends on myoplasmic Ca2+ and Mg2+ concentrations. RyRs from skeletal and cardiac muscle are activated by μm Ca2+ and inhibited by mm Ca2+ and Mg2+. 45Ca2+ release from skeletal SR vesicles suggests two mechanisms for Mg2+-inhibition (Meissner, Darling & Eveleth, 1986, Biochemistry(More)
We provide novel evidence that the sarcoplasmic reticulum calcium binding protein, calsequestrin, inhibits native ryanodine receptor calcium release channel activity. Calsequestrin dissociation from junctional face membrane was achieved by increasing luminal (trans) ionic strength from 250 to 500 mM with CsCl or by exposing the luminal side of ryanodine(More)
Calsequestrin is by far the most abundant Ca(2+)-binding protein in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle. It allows the Ca2+ required for contraction to be stored at total concentrations of up to 20mM, while the free Ca2+ concentration remains at approximately 1mM. This storage capacity confers upon muscle the ability to contract(More)
Myotonic dystrophy type 1 (DM1) is a debilitating multisystemic disorder caused by a CTG repeat expansion in the DMPK gene. Aberrant splicing of several genes has been reported to contribute to some symptoms of DM1, but the cause of muscle weakness in DM1 and elevated Ca2+ concentrations in cultured DM muscle cells is unknown. Here, we investigated the(More)
The plasmalemmal area of striated muscle fibres is greater than the apparent surface area (A = circumference x length) because of variable folds and the invaginations of the caveolae and T-tubules. Freeze-fracture replicas of the surface membrane of sartorius and semitendinosus muscles from Rana pipiens have been used to determine the numbers and(More)
FKBP12 was removed from ryanodine receptors (RyRs) by incubation of rabbit skeletal muscle terminal cisternae membranes with rapamycin. The extent of FKBP12 removal was estimated by immunostaining Western blots of terminal cisternae proteins. Single FKBP12-depleted RyR channels, incorporated into planar lipid bilayers, were modulated by Ca2+, ATP,(More)
Malignant hyperthermia (MH) is a potentially fatal, inherited skeletal muscle disorder in humans and pigs that is caused by abnormal regulation of Ca2+ release from the sarcoplasmic reticulum (SR). MH in pigs is associated with a single mutation (Arg615Cys) in the SR ryanodine receptor (RyR) Ca2+ release channel. The way in which this mutation leads to(More)
Effects of the reactive disulfides, 2,2'- and 4,4'-dithiodipyridine, on single cardiac ryanodine receptor (RyR) ion channels incorporated into lipid bilayers are reported. RyRs are activated within minutes of addition of the reactive disulfides (10(-7) to 10(-3) M) with an irreversible loss of channel activity after the activation at concentrations > or =(More)
Excitation-contraction coupling in both skeletal and cardiac muscle depends on structural and functional interactions between the voltage-sensing dihydropyridine receptor L-type Ca(2+) channels in the surface/transverse tubular membrane and ryanodine receptor Ca(2+) release channels in the sarcoplasmic reticulum membrane. The channels are targeted to either(More)
Calcium signaling in myocytes is dependent on the cardiac ryanodine receptor (RyR2) calcium release channel and the calcium buffering protein in the sarcoplasmic reticulum, cardiac calsequestrin (CSQ2). The overall properties of CSQ2 and its regulation of RyR2 have not been explored in detail or directly compared with skeletal CSQ1 and its regulation of the(More)