Angela Duparré

Learn More
Surface topography and light scattering were measured on 15 samples ranging from those having smooth surfaces to others with ground surfaces. The measurement techniques included an atomic force microscope, mechanical and optical profilers, confocal laser scanning microscope, angle-resolved scattering, and total scattering. The samples included polished and(More)
Special substrate-film designs are used to measure roughness-induced scattering and scattering from the volume of optical thin films separately. So theoretical models of surface roughness and volume scattering become applicable to the experimental data, and quantitative information on thin-film microstructure can be derived. Measuring total integrated and(More)
The light scattering of rough metallic surfaces with roughness levels ranging from a few to several hundred nanometers is modeled and compared to experimental data. Different modeling approaches such as the classical Rayleigh-Rice vector perturbation theory and the new Generalized Harvey-Shack theory are used and critically assessed with respect to ranges(More)
A theoretical model is presented that describes the volume scattering in thin optical films, particularly in typical columnar structures. It is based on a first-order perturbation theory that concerns the fluctuation of the dielectric permittivity in the film. For evaporated PbF(2) films that show a pronounced columnar morphology, angular as well as total(More)
Single layers of MgF2 and LaF3 were deposited upon superpolished fused-silica and CaF2 substrates by ion-beam sputtering (IBS) as well as by boat and electron beam (e-beam) evaporation and were characterized by a variety of complementary analytical techniques. Besides undergoing photometric and ellipsometric inspection, the samples were investigated at 193(More)
Scattering characteristics of multilayer fluoride coatings for 193 nm deposited by ion beam sputtering and the related interfacial roughnesses are investigated. Quarter- and half-wave stacks of MgF(2) and LaF(3) with increasing thickness are deposited onto CaF(2) and fused silica and are systematically characterized. Roughness measurements carried out by(More)
Highly reflective Molybdenum/Silicon multilayer mirrors for 13.5 nm are characterized at-wavelength using a new laboratory size measurement system for EUV reflectance and scattering. Roughness analysis before and after coating by Atomic Force Microscopy indicates roughness enhancement as well as smoothing effects during thin film growth. The impact of the(More)
The realization of ultra low-loss dielectric reflection gratings with diffraction efficiencies between 7% and 0.02% is presented. By placing the grating beneath the highly reflective layerstack scattering was significantly reduced. This concept allows the all-reflective coupling of high laser radiation to high finesse cavities, thereby circumventing thermal(More)
Optical coatings with enhanced roughness offer promising prospects for ultrahydrophobic transparent surfaces with controlled scatter losses. Our approach links roughness characteristics with both wetting behavior and scattering. Experiments with rough oxide layers yielded surfaces with a high water contact angle.
Light scattered from interface imperfections carries valuable information about its origins. For single surfaces, light-scattering techniques have become a powerful tool for the characterization of surface roughness. For thin-film coatings, however, solving the inverse scattering problem seemed to be impossible because of the large number of parameters(More)