Learn More
Neurofibromatosis 2 (NF2) is a tumor predisposition syndrome in which affected individuals develop nervous system tumors at an increased frequency. The most common tumor in individuals with NF2 is the schwannoma, which is composed of neoplastic Schwann cells lacking NF2 gene expression. Moreover, inactivation of the NF2 gene is observed in nearly all(More)
Neurofibromatosis type 1 is a relatively common inherited disorder. Patients have a high predisposition to develop both benign and malignant tumours. Although many manifestations of neurofibromatosis type 1 affect the nervous system, other organs and tissues can also be affected. Because of the varying features and clinical heterogeneity inherent to this(More)
NF-kappaB inducing kinase (NIK) is required for osteoclastogenesis in response to pathologic stimuli, and its loss leads to functional blockade of both alternative and classical NF-kappaB caused by cytoplasmic retention by p100. We now show that deletion of p100 restores the capacity of NIK-deficient osteoclast (OC) precursors to differentiate and(More)
The neurofibromatosis 2 (NF2) tumor suppressor belongs to the Protein 4.1 family of molecules that link the actin cytoskeleton to cell surface glycoproteins. We have previously demonstrated that the NF2 protein, merlin, can suppress cell growth in vitro and in vivo as well as impair actin cytoskeleton-associated processes, such as cell spreading,(More)
Platelets contribute to the development of metastasis, the most common cause of mortality in cancer patients, but the precise role that anti-platelet drugs play in cancer treatment is not defined. Metastatic tumor cells can produce platelet alphaIIb beta3 activators, such as ADP and thromboxane A(2) (TXA(2)). Inhibitors of platelet beta3 integrins decrease(More)
Chemokines and chemokine receptors play diverse roles in homeostasis. The chemokine stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 have critical functions in the immune, circulatory, and central nervous systems and have also been implicated in tumor biology and metastasis. Here we review the current data regarding the role of the CXCR4/SDF-1(More)
Inhibition of osteoclast (OC) activity has been associated with decreased tumor growth in bone in animal models. Increased recognition of factors that promote osteoclastic bone resorption in cancer patients led us to investigate whether increased OC activation could enhance tumor growth in bone. Granulocyte colony-stimulating factor (G-CSF) is used to treat(More)
Blockade of osteoclast (OC) activity efficiently decreases tumor burden as well as associated bone erosion in immune-compromised animals bearing human osteolytic cancers. In this study, we showed that modulation of antitumor T-cell responses alters tumor growth in bone, regardless of OC status, by using genetic and pharmacologic models. PLCγ2(-/-) mice,(More)
One in 20 carriers of human T-cell leukemia virus type 1 (HTLV-1) will develop adult T-cell leukemia/lymphoma (ATL), a disease frequently associated with hypercalcemia, bone destruction, and a fatal course refractory to current therapies. Overexpression of the HTLV-1-encoded Tax oncoprotein under the human granzyme B promoter causes large granular(More)
Bone metastasis causes significant morbidity in cancer patients, including bone pain, pathologic fractures, nerve compression syndrome, and hypercalcemia. Animal models are utilized to study the pathogenesis of skeletal metastases and to evaluate potential therapeutic agents. Previously published methods for imaging bone metastasis in rodent models have(More)