Angel N Morrow

Learn More
A novel assay was developed for Daudi cells in which the antiviral (AV) and antiproliferative (AP) activities of interferon (IFN) can be measured simultaneously. Using this novel assay, conditions allowing IFN AV protection but no growth inhibition were identified and selected. Daudi cells were treated under these conditions, and gene expression microarray(More)
A number of tumors are still resistant to the antiproliferative activity of human interferon (IFN)-alpha. The Janus kinases/Signal Transducers and Activators of Transcription (JAK-STAT) pathway plays an important role in initial IFN signaling. To enhance the antiproliferative activity of IFN-alpha, it is important to elucidate which factors in the JAK-STAT(More)
The clinical possibilities of interferon (IFN) became apparent with early studies demonstrating that it was capable of inhibiting tumor cells in culture and in vivo using animal models. IFN gained the distinction of being the first recombinant cytokine to be licensed in the USA for the treatment of a malignancy in 1986, with the approval of IFN-α2a(More)
We have previously reported that low concentrations of interferon (IFN)-activated monocytes exert near-eradicative cytocidal activity against low concentrations of several human tumor cells in vitro. In the present study, we examined 7 human tumor cell lines and 3 diploid lines in the presence or absence of 10 ng/mL IFNα2a and monocytes. The results(More)
Type I (e.g., IFN-α, IFN-β) and type II IFNs (IFN-γ) have antiviral, antiproliferative, and immunomodulatory properties. Both types of IFN signal through the Jak/STAT pathway to elicit antiviral activity, yet IFN-γ is thought to do so only through STAT1 homodimers, whereas type I IFNs activate both STAT1- and STAT2-containing complexes such as(More)
  • 1