Angélique D. Ducray

Learn More
Creatine kinase catalyses the reversible transphosphorylation of creatine by ATP. In the cell, creatine kinase isoenzymes are specifically localized at strategic sites of ATP consumption to efficiently regenerate ATP in situ via phosphocreatine or at sites of ATP generation to build-up a phosphocreatine pool. Accordingly, the creatine kinase/phosphocreatine(More)
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, characterized by a prominent loss of GABA-ergic medium-sized spiny neurons in the caudate putamen. There is evidence that impaired energy metabolism contributes to neuronal death in HD. Creatine is an endogenous substrate for creatine kinases and thereby supports cellular ATP(More)
There is increasing interest in the search for therapeutic options for diseases and injuries of the central nervous system (CNS), for which currently no effective treatment strategies are available. Replacement of damaged cells and restoration of function can be accomplished by transplantation of cells derived from different sources, such as human foetal(More)
Glial-cell-line-derived neurotrophic factor (GDNF), neurturin (NRTN), artemin (ARTN) and persephin (PSPN), known as the GDNF family ligands (GFLs), influence the development, survival and differentiation of cultured dopaminergic neurons from ventral mesencephalon (VM). Detailed knowledge about the effects of GFLs on other neuronal populations in the VM is(More)
Glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for ventral mesencephalic (VM) dopaminergic neurons. Subpopulations of dopaminergic and non-dopaminergic VM neurons express the calcium-binding proteins calbindin (CB) and calretinin (CR). Characterization of the actions of GDNF on distinct subpopulations of VM cells is of great(More)
The development of the nervous system requires a strict control of cell cycle entry and withdrawal. The olfactory epithelium (OE) is noticeable by its ability to yield new neurons not only during development but also continuously during adulthood. The aim of our study was to investigate, by biochemical and immunohistochemical methods, which cell cycle(More)
Neurturin (NRTN), artemin (ARTN), persephin (PSPN) and glial cell line-derived neurotrophic factor (GDNF) form a group of neurotrophic factors, also known as the GDNF family ligands (GFLs). They signal through a receptor complex composed of a high-affinity ligand binding subunit, postulated ligand specific, and a common membrane-bound tyrosine kinase RET.(More)
In the adult brain, neural proliferation is almost absent and neurons are generally not renewed. By contrast, in the olfactory organ, olfactory neurons are produced continuously throughout life. To investigate whether specific cell cycle inhibitors are involved in the control of neural quiescence in adulthood, we compared their expression either in(More)
Creatine is a substrate of cytosolic and mitochondrial creatine kinases. Its supplementation augments cellular levels of creatine and phosphocreatine, the rate of ATP resynthesis, and improves the function of the creatine kinase energy shuttle. High cytoplasmatic total creatine levels have been reported to be neuroprotective by inhibiting apoptosis. In(More)
Nitric oxide (NO) mediates a variety of physiological functions in the central nervous system and acts as an important developmental regulator. Striatal interneurons expressing neuronal nitric oxide synthase (nNOS) have been described to be relatively spared from the progressive cell loss in Huntington's disease (HD). We have recently shown that creatine,(More)