Learn More
A photosensitizer is defined as a chemical entity, which upon absorption of light induces a chemical or physical alteration of another chemical entity. Some photosensitizers are utilized therapeutically such as in photodynamic therapy (PDT) and for diagnosis of cancer (fluorescence diagnosis, FD). PDT is approved for several cancer indications and FD has(More)
A successful cure of cancer by biopharmaceuticals with intracellular targets is dependent on both specific and sufficient delivery of the drug to the cytosol or nuclei of malignant cells. However, cytosolic delivery and efficacy of membrane-impermeable cancer therapeutics are often hampered by the sequestration and degradation of the drugs in the(More)
Photodynamic therapy (PDT) is an anticancer therapy that utilizes the cytotoxic properties of a photosensitizer (PS) when combined with exposure to light. Photochemical internalization (PCI) is a drug delivery method for macromolecules based on PDT with endo-lysosomal localizing PSs, and synergistic effects can be obtained by PCI of EGFR targeting drugs. In(More)
Photodynamic therapy (PDT) is a selective treatment modality against cancer. PDT is based on the preferential retention of photosensitizers (PSs), in the tumour and subsequent light exposure which activates the PS and generates reactive oxygen species. Multimodality therapy is increasingly relevant in cancer treatment and PDT has been shown as an effective(More)
Epidermal growth factor receptor (EGFR) targeting has become a major field in both cancer research and therapy. In the present study an EGF-saporin affinity toxin has been established and evaluated in two EGFR overexpressing cancer cell lines. The binding of saporin to EGF did not influence the ribosome-inactivating activity of saporin as measured by a(More)
Photochemical internalization (PCI) is a novel technology of macromolecular delivery. By PCI, endocytosed membrane-impermeable therapeutic drugs are photochemically released from entrapment in endo-lysosomal compartments to the cytosol of target cells. In the present report, we describe the in vitro proof-of-concept for PCI of cetuximab-saporin, an(More)
BACKGROUND Photochemical internalization (PCI) is a modality for cytosolic release of drugs trapped in endocytic vesicles. The method is based upon photosensitizers localized in the membranes of endocytic vesicles which create membrane rupture upon light exposure by generating reactive oxygen species (ROS), predominantly singlet oxygen ((1)O(2)). METHODS(More)
PDT in cancer therapy has been reviewed several times recently and many published reports have been showing promising results. The clinical approvals for PDT include curative treatment of early or superficial cancers and palliative treatment of more advanced disease. Still PDT has yet to become a widely used cancer treatment. This may partly be due to(More)
The utilization of macromolecules in therapy of cancer and other diseases is becoming increasingly relevant. Recent advances in molecular biology and biotechnology have made it possible to improve targeting and design of cytotoxic agents, DNA complexes, and other macromolecules for clinical applications. To achieve the expected biological effect of these(More)
Photochemical internalization (PCI) is a novel technology for release of endocytosed macromolecules into the cytosol. The technology is based on the use of photosensitizers located in endocytic vesicles. Upon activation by light such photosensitizers induce a release of macromolecules from their compartmentalization in endocytic vesicles. PCI has been shown(More)