Aneta Jezierska-Mazzarello

Learn More
We have studied substituent effects on the properties of the intramolecular hydrogen bond of some ortho-hydroxy Schiff bases using density functional theory (DFT) based first-principle molecular dynamics (FPMD) and path integral molecular dynamics. The studied compounds possess a strong intramolecular hydrogen bond (r((O⋅⋅⋅N)) ≤ 2.6 Å), which can be tuned(More)
Properties of hydrogen bonds can induce changes in geometric or electronic structure parameters in the vicinity of the bridge. Here, we focused primarily on the influence of intramolecular H-bonding on the molecular properties in selected ortho-hydroxybenzaldehydes, with additional restricted insight into substituent effects. Static models were obtained in(More)
The presence of intramolecular hydrogen bonds influences the binding energy, tautomeric equilibrium, and spectroscopic properties of various classes of organic molecules. This article discusses the O-H...S bridge, one of the less commonly investigated types of intramolecular interactions. 3-mercapto-1,3-diphenylprop-2-en-1-one was considered as the model(More)
An analysis of the hydrogen bridge of a Mannich base-type compound [3,5,6-trimethyl-2(N,N-dimethylaminomethyl)phenol, TMM] was performed according to the Car-Parrinello molecular dynamics (CPMD) scheme. A classical treatment of nuclei coupled with a first-principle potential energy surface was obtained from molecular dynamics simulation. Dipole moment(More)
Counterprogation neural network is shown to be a powerful and suitable tool for the investigation of toxicity. This study mined a data set of 568 chemicals. Two hundred eighty-two objects were used as the training set and 286 as the test set. The final model developed presents high performances on the data set R(2) = 0.83 (R(2) = 0.97 on the training set,(More)
Understanding of the electronic structure evolution due to a proton dynamics is a key issue in biochemistry and material science. This paper reports on density functional theory calculations of Schiff bases containing short, strong intramolecular hydrogen bonds where the bridged proton is located: (i) at the donor site, (ii) strongly delocalized, and (iii)(More)
First-principles Car-Parrinello molecular dynamics, ab initio (MP2) and density functional schemes have been used to explore the tautomeric equilibrium in three tris(amino(R)methylidene)cyclohexane-1,3,5-triones (R = hydrogen, methyl or phenyl group). The dynamic nature of the cyclic hydrogen bonding has been studied by the first-principles MD method. The(More)
1D and 2D NMR study, Car-Parrinello molecular dynamics, as well as classical molecular dynamics were employed to investigate three derivatives of benzodiazacoronands (achiral compounds which are able to form single crystals with a planar chirality) with intention to explain all subtle effects important during their preorganization, the step anticipating(More)
The structure, proton transfer, and vibrational dynamics under ambient conditions of a selected ortho-hydroxy Schiff base type compound, 2-(N-methyl-alpha-iminoethyl)-4-chlorophenol, containing a very short intramolecular hydrogen bond, were investigated computationally in the gas phase and in the crystal by density functional theory (DFT) based(More)
Due to gradual and controlled changes of interatomic distances between heavy atoms in OH…F⁻ of C(6)H(5)OH…F⁻ systems it was possible to study the electronic structure evolution. Computation at B3LYP/6-311+G(d,p) level of theory was performed for this purpose. Changes in charges at atoms and characteristics at bond critical points (BCPs) of the H-bond region(More)