Andy Lambrechts

Learn More
Reduced energy consumption is one of the most important design goals for embedded application domains like wireless, multimedia and biomedical. Instruction memory hierarchy has been proven to be one of the most power hungry parts of the system. This paper introduces an architectural enhancement for the instruction memory to reduce energy and improve(More)
Coarse-Grained Reconfigurable Array (CGRA) architectures accelerate the same inner loops that benefit from the high ILP support in VLIW architectures. By executing non-loop code on other cores, however, CGRAs can focus on such loops to execute them more efficiently. This chapter discusses the basic principles of CGRAs, and the wide range of design options(More)
Modern portable embedded devices require processors that can provide sufficient performance for demanding multimedia and wireless applications. At the same time they have to be flexible to support a wide range of products and extremely energy efficient to provide a long battery life. Coarse Grained Reconfigurable Architectures (CGRAs) potentially meet these(More)
Users expect future handheld devices to provide extended multimedia functionality and have long battery life. This type of application imposes heavy constraints on both (realtime) performance and energy consumption and forces designers to optimise all parts of their platform. In this experiment we focus on the different processor core design options for(More)
Users expect future handheld devices to provide extended multimedia functionality and have long battery life. This type of application imposes heavy constraints on performance and power consumption and forces designers to optimize all parts of their platform. Evaluating the overall platform power breakdown is therefore critical to determine where to spend(More)