Andy J. A. Vinten

Learn More
We investigated a range of microbiological community assays performed on scrapes of biofilms formed on artificial diffusing substrates deployed in 8 streams in eastern Scotland, with a view to using them to characterize ecological response to stream water quality. The assays considered were: Multiplex Terminal Restriction Fragment Length Polymorphism or(More)
The Nitrogen Risk Assessment Model for Scotland (NIRAMS) has been developed as a screening tool for prediction of streamwater N concentrations draining from agricultural land in Scotland. The objective of the model is to be able to predict N concentrations for ungauged catchments, to fill gaps in monitoring data and provide guidance in relation to policy(More)
A simple model predicting bathing water concentrations of Escherichia coli from livestock in the Irvine catchment in SW Scotland has been adapted for intestinal enterococci (IE). This has been used to predict risk of bather illness by extrapolation of published data on bather IE exposure vs incidence of gastro-enteritis. Simulated reduction in the risk of(More)
The nitrate concentration in discharge from the Balmalcolm borehole in Fife, Scotland, has steadily increased from 4.5 mg l(-1) NO3-N in the early 1970s to 11.0 mg l(-1) NO3-N in 1998. Consequently the catchment of the borehole, covering an area of 400 ha has recently been designated a Nitrate Vulnerable Zone under the EC Nitrate Directive [Commission of(More)
The use of molecular tools, principally qPCR, versus traditional culture-based methods for quantifying microbial parameters (e.g., Fecal Indicator Organisms) in bathing waters generates considerable ongoing debate at the science-policy interface. Advances in science have allowed the development and application of molecular biological methods for rapid (~2(More)
Th e European Union Water Framework Directive (WFD) requires Member States to set water quality objectives and identify cost-eff ective mitigation measures to achieve " good status " in all waters. However, costs and eff ectiveness of measures vary both within and between catchments, depending on factors such as land use and topography. Th e aim of this(More)
The amount and concentration of N in catchment runoff is strongly controlled by a number of hydrological influences, such as leaching rates and the rate of transport of N from the land to surface water bodies. This paper describes how the principal hydrological controls at a catchment scale have been represented within the Nitrogen Risk Assessment Model for(More)
In this study, we investigate the extent to which the incidence of Escherichia coli O157:H7 can be predicted in human faeces, from human intake and infection via water contaminated by livestock and carrying this zoonotic pathogen in North-East (NE) and South-West (SW) regions of Scotland. In SW Scotland, there is a risk of coastal recreational waters(More)
The Nitrogen Risk Assessment Model for Scotland (NIRAMS) has been developed for prediction of streamwater N concentrations draining from agricultural land in Scotland. The objective of the model is to predict N concentrations for ungauged catchments, to fill gaps in monitoring data and to provide guidance in relation to policy development. The model uses(More)
Eutrophication is a major water pollution issue and can lead to excessive growth of aquatic plant biomass (APB). However, the assimilation of nutrients into APB provides a significant target for their recovery and reuse, and harvesting problematic APB in impacted freshwater bodies offers a complementary approach to aquatic restoration, which could(More)