Andy J. A. Vinten

Learn More
The amount and concentration of N in catchment runoff is strongly controlled by a number of hydrological influences, such as leaching rates and the rate of transport of N from the land to surface water bodies. This paper describes how the principal hydrological controls at a catchment scale have been represented within the Nitrogen Risk Assessment Model for(More)
The use of molecular tools, principally qPCR, versus traditional culture-based methods for quantifying microbial parameters (e.g., Fecal Indicator Organisms) in bathing waters generates considerable ongoing debate at the science-policy interface. Advances in science have allowed the development and application of molecular biological methods for rapid (~2(More)
The Nitrogen Risk Assessment Model for Scotland (NIRAMS) has been developed for prediction of streamwater N concentrations draining from agricultural land in Scotland. The objective of the model is to predict N concentrations for ungauged catchments, to fill gaps in monitoring data and to provide guidance in relation to policy development. The model uses(More)
The European Union Water Framework Directive (WFD) requires Member States to set water quality objectives and identify cost-effective mitigation measures to achieve "good status" in all waters. However, costs and effectiveness of measures vary both within and between catchments, depending on factors such as land use and topography. The aim of this study was(More)
Eutrophication is a major water pollution issue and can lead to excessive growth of aquatic plant biomass (APB). However, the assimilation of nutrients into APB provides a significant target for their recovery and reuse, and harvesting problematic APB in impacted freshwater bodies offers a complementary approach to aquatic restoration, which could(More)
  • 1