Andy D. Pimentel

Learn More
The sheer complexity of today’s embedded systems forces designers to start with modeling and simulating system components and their interactions in the very early design stages. It is therefore imperative to have good tools for exploring a wide range of design choices, especially during the early design stages, where the design space is at its largest. This(More)
We present a new VLIW core as a successor to the TriMedia TM1000. The processor is targeted for embedded use in media-processing devices like DTVs and set-top boxes. Intended as a core, its design must be supplemented with on-chip co-processors to obtain a cost-effective system. Good performance is obtained through a uniform 64-bit 5 issue-slot VLIW design,(More)
With ever-increasing system complexities, all major semiconductor roadmaps have identified the need for moving to higher levels of abstraction in order to increase productivity in electronic system design. Most recently, many approaches and tools that claim to realize and support a design process at the so-called electronic system level (ESL) have emerged.(More)
Sesame is a software framework which aims at developing a modeling and simulation environment for the efficient design space exploration of heterogeneous embedded systems. Since Sesame recognizes separate application and architecture models within a single system simulation, it needs an explicit mapping step to relate these models for co-simulation. The(More)
Modern signal processing and multimedia embedded systems increasingly have heterogeneous system architectures. In these systems, programmable processors provide flexibility to support multiple applications, while dedicated hardware blocks provide high performance for time-critical application tasks. The heterogeneity of these embedded systems and the(More)
The Sesame environment provides modeling and simulation methods and tools for the efficient design space exploration of heterogeneous embedded multimedia systems. In this paper we describe the Sesame software system and demonstrate its capabilities using several examples. We show that Sesame significantly reduces model construction time through the use of(More)
Daedalus is a system-level design flow for the design of multiprocessor system-on-chip (MP-SoC) based embedded multimedia systems. It offers a fully integrated tool-flow in which design space exploration (DSE), system-level synthesis, application mapping, and system prototyping of MP-SoCs are highly automated. In this paper, we describe our first industrial(More)
System-level simulation and design space exploration (DSE) are key ingredients for the design of multiprocessor system-on-chip (MP-SoC) based embedded systems. The efforts in this area, however, typically use ad-hoc software infrastructures to facilitate and support the system-level DSE experiments. In this paper, we present a new, generic system-level(More)
System-level design space exploration (DSE), which is performed early in the design process, is of eminent importance to the design of complex multi-processor embedded system architectures. During system-level DSE, system parameters like, e.g., the number and type of processors, the type and size of memories, or the mapping of application tasks to(More)