Andy Cantrell

Learn More
A novel series of potent specific HIV-1 inhibitory compounds is described. The lead compound in the series, N-(2-phenethyl)-N'-(2-thiazolyl)thiourea (1), inhibits HIV-1 RT using rCdG as the template with an IC50 of 0.9 microM. In MT-4 cells, compound 1 inhibits HIV-1 with an ED50 of 1.3 microM. The 50% cytotoxic dose in cell culture is > 380 microM. The(More)
Phenylethylthiazolylthiourea (PETT) derivatives have been identified as a new series of non-nucleoside inhibitors of HIV-1 RT. Structure-activity relationship studies of this class of compounds resulted in the identification of N-[2-(2-pyridyl)ethyl]-N'-[2-(5-bromopyridyl)]-thiourea hydrochloride (trovirdine; LY300046.HCl) as a highly potent anti-HIV-1(More)
To identify the minimal structural elements necessary for biological activity, the rigid tricyclic nucleus of the known human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) inhibitor tetrahydroimidazobenzodiazepinthione was subjected to systematic bond disconnection to obtain simpler structures. A rational selection and testing of modeled(More)
Eleven structural analogues of human basic fibroblast growth factor (bFGF) have been prepared by site-directed mutagenesis of a synthetic bFGF gene to examine the effect of amino acid substitutions in the three putative heparin-binding domains on FGF's biological activity. After expression in Escherichia coli, the mutant proteins were purified to(More)
Expression plasmids encoding random sequence mutant proteins of insulin-like growth factor II (IGFII) were constructed by cassette mutagenesis, to improve the efficiency of IGFII synthesis in Escherichia coli. A pool of oligodeoxyribonucleotide linkers containing random trinucleotide sequences were used to introduce second-codon substitutions into the gene(More)
  • 1