Learn More
Here, we have investigated mitochondrial biology and energy metabolism in human embryonic stem cells (hESCs) and hESC-derived neural stem cells (NSCs). Although stem cells collectively in vivo might be expected to rely primarily on anaerobic glycolysis for ATP supply, to minimise production of reactive oxygen species, we show that in vitro this is not so:(More)
Stromal cells have been used to induce dopaminergic differentiation of mouse, primate, and human embryonic stem cells (hESCs), but the mechanism that governs this induction is unknown. In this manuscript, we show that medium conditioned by the stromal cell line PA6 (PA6-CM) can induce dopaminergic differentiation in neural stem cells (NSCs) derived from(More)
Human induced pluripotent stem cells (iPSCs) reprogrammed from somatic cells represent a promising unlimited cell source for generating patient-specific cells for biomedical research and personalized medicine. As a first step, critical to clinical applications, we attempted to develop defined culture conditions to expand and differentiate human iPSCs into(More)
Rapid and effective drug discovery for neurodegenerative disease is currently impeded by an inability to source primary neural cells for high-throughput and phenotypic screens. This limitation can be addressed through the use of pluripotent stem cells (PSCs), which can be derived from patient-specific samples and differentiated to neural cells for use in(More)
BACKGROUND We have previously described fundamental differences in the biology of stem cells as compared to other dividing cell populations. We reasoned therefore that a differential screen using US Food and Drug Administration (FDA)-approved compounds may identify either selective survival factors or specific toxins and may be useful for the(More)
We describe the development of a process for the genome-wide mapping of interactions between protein domains and peptide ligands entirely based on high-throughput biochip technologies. A phage library displaying protein domains from a randomly fragmented and cloned cDNA library will be "panned" on an array of synthetic peptide ligands. After multiplexed(More)
BACKGROUND Human embryonic stem cells (hESCs) may provide an invaluable resource for regenerative medicine. To move hESCs towards the clinic it is important that cells with therapeutic potential be reproducibly generated under completely defined conditions. METHODOLOGY/PRINCIPAL FINDINGS Here we report a four-step scalable process that is readily(More)
Specific protein associations define the wiring of protein interaction networks and thus control the organization and functioning of the cell as a whole. Peptide recognition by PDZ and other protein interaction domains represents one of the best-studied classes of specific protein associations. However, a mechanistic understanding of the relationship(More)
Multiple recent reports implicate amyloid precursor protein (APP) signaling in the pathogenesis of Alzheimer's disease, but the APP-dependent signaling network involved has not been defined. Here, we report a novel consensus sequence for interaction with the PDZ-1 and PDZ-2 domains of the APP-interacting proteins Mint1, Mint2, and Mint3 (X11alpha, X11beta,(More)
Human embryonic stem cells (hESCs) can differentiate into neural stem cells (NSCs), which can further be differentiated into neurons and glia cells. Therefore, these cells have huge potential as source for treatment of neurological diseases. Membrane-associated proteins are very important in cellular signaling and recognition, and their function and(More)