Andrzej Manikowski

  • Citations Per Year
Learn More
2-Phenylamino-6-oxo-9-(4-hydroxybutyl)purine (HBPG) is a thymidine kinase inhibitor that prevents encephalitic death in mice caused by herpes simplex virus (HSV) types 1 and 2, although its potency is somewhat less than that of acyclovir (ACV). The present study was undertaken to determine the effect of combinations of HBPG and either ACV, phosphonoformate(More)
Novel Gram-positive (Gram+) antibacterial compounds consisting of a DNA polymerase IIIC (pol IIIC) inhibitor covalently connected to a topoisomerase/gyrase inhibitor are described. Specifically, 3-substituted 6-(3-ethyl-4-methylanilino)uracils (EMAUs) in which the 3-substituent is a fluoroquinolone moiety (FQ) connected by various linkers were synthesized.(More)
Numerous 3-substituted-6-(3-ethyl-4-methylanilino)uracils (EMAU) have been synthesized and screened for their capacity to inhibit the replication-specific bacterial DNA polymerase IIIC (pol IIIC) and the growth of Gram+ bacteria in culture. Direct alkylation of 2-methoxy-6-amino-4-pyrimidone produced the N3-substituted derivatives, which were separated from(More)
Derivatives of the herpes simplex thymidine kinase inhibitor HBPG [2-phenylamino-9-(4-hydroxybutyl)-6-oxopurine] have been synthesized and tested for inhibitory activity against recombinant enzymes (TK) from herpes simplex types 1 and 2 (HSV-1, HSV-2). The compounds inhibited phosphorylation of [3H]thymidine by both enzymes, but potencies differed(More)
Herpes simplex virus (HSV) types 1 and 2 thymidine kinases (TK) are responsible for phosphorylation of antiherpes acyclonucleosides such as acyclovir (ACV) and 9-(4-hydroxybutyl)guanine (HBG). Related compounds, the N(2)-phenyl-9-(hydroxyalkyl)guanines, are devoid of direct antiviral activity, but potently inhibit the viral TKs and block viral reactivation(More)
  • 1