Learn More
We have modified and improved the GOR algorithm for the protein secondary structure prediction by using the evolutionary information provided by multiple sequence alignments, adding triplet statistics, and optimizing various parameters. We have expanded the database used to include the 513 non-redundant domains collected recently by Cuff and Barton(More)
SUMMARY We have created the GOR V web server for protein secondary structure prediction. The GOR V algorithm combines information theory, Bayesian statistics and evolutionary information. In its fifth version, the GOR method reached (with the full jack-knife procedure) an accuracy of prediction Q3 of 73.5%. Although GOR V has been among the most successful(More)
A new method for predicting protein secondary structure from amino acid sequence has been developed. The method is based on multiple sequence alignment of the query sequence with all other sequences with known structure from the protein data bank (PDB) by using BLAST. The fragments of the alignments belonging to proteins from the PBD are then used for(More)
Two-body inter-residue contact potentials for proteins have often been extracted and extensively used for threading. Here, we have developed a new scheme to derive four-body contact potentials as a way to consider protein interactions in a more cooperative model. We use several datasets of protein native structures to demonstrate that around 500 chains are(More)
BACKGROUND The abundant data available for protein interaction networks have not yet been fully understood. New types of analyses are needed to reveal organizational principles of these networks to investigate the details of functional and regulatory clusters of proteins. RESULTS In the present work, individual clusters identified by an eigenmode analysis(More)
One of the challenges in protein secondary structure prediction is to overcome the cross-validated 80% prediction accuracy barrier. Here, we propose a novel approach to surpass this barrier. Instead of using a single algorithm that relies on a limited data set for training, we combine two complementary methods having different strengths: Fragment Database(More)
BACKGROUND Protein-protein interactions play a critical role in protein function. Completion of many genomes is being followed rapidly by major efforts to identify interacting protein pairs experimentally in order to decipher the networks of interacting, coordinated-in-action proteins. Identification of protein-protein interaction sites and detection of(More)
Coarse-grained elastic network models have been successful in determining functionally relevant collective motions. The level of coarse-graining, however, has usually focused on the level of one point per residue. In this work, we compare the applicability of elastic network models over a broader range of representational scales. We apply normal mode(More)
The high packing density inside proteins leads to certain geometric regularities and also is one of the most important contributors to the high extent of cooperativity manifested by proteins in their cohesive domain motions. The orientations between neighboring nonbonded residues in proteins substantially follow the similar geometric regularities,(More)
BACKGROUND The ability to generate, visualize, and analyze motions of biomolecules has made a significant impact upon modern biology. Molecular Dynamics has gained substantial use, but remains computationally demanding and difficult to setup for many biologists. Elastic network models (ENMs) are an alternative and have been shown to generate the dominant(More)