Andrzej Jerzmanowski

Learn More
In yeast and mammals, ATP-dependent chromatin remodeling complexes belonging to the SWI/SNF family play critical roles in the regulation of transcription, cell proliferation, differentiation and development. Homologs of conserved subunits of SWI/SNF-type complexes, including several putative ATPases and other core subunits, have been identified in plants.(More)
Histone H1 is an abundant component of eukaryotic chromatin that is thought to stabilize higher-order chromatin structures. However, the complete knock-out of H1 genes in several lower eukaryotes has no discernible effect on their appearance or viability. In higher eukaryotes, the presence of many mutually compensating isoforms of this protein has made(More)
SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin-remodeling complexes mediate ATP-dependent alterations of DNA-histone contacts. The minimal functional core of conserved SWI/SNF complexes consists of a SWI2/SNF2 ATPase, SNF5, SWP73, and a pair of SWI3 subunits. Because of early duplication of the SWI3 gene family in plants, Arabidopsis thaliana encodes four(More)
The life cycle of flowering plants is marked by several post-embryonic developmental transitions during which novel cell fates are established. Notably, the reproductive lineages are first formed during flower development. The differentiation of spore mother cells, which are destined for meiosis, marks the somatic-to-reproductive fate transition. Meiosis(More)
Deficient in DNA Methylation 1 (DDM1) protein is required to maintain the DNA methylation status of Arabidopsis thaliana. DDM1 is a member of the broad SWI2/SNF2 protein family. Because of its phylogenetic position, DDM1 has been speculated to act as a chromatin-remodeling factor. Here we used a purified recombinant DDM1 protein to investigate whether it(More)
ATP-dependent nucleosome remodeling plays a central role in the regulation of access to chromatin DNA. Swi/Snf remodeling complexes characterized in yeast, Drosophila and mammals all contain a conserved set of core subunits composed of homologs of yeast SNF2-type DNA-dependent ATPase, SNF5 and SWI3 proteins. So far, no complete Swi/Snf-type complex has been(More)
Animal cells react to mitogenic or stress stimuli by rapid up-regulation of immediate-early (IE) genes and a parallel increase in characteristic modifications of core histones: chromatin changes, collectively termed the nucleosomal response. With regard to plants little is known about the accompanying changes at the chromatin level. We have used tobacco(More)
Tobacco (Nicotiana tabacum L.) has two major H1 variants (H1A and H1B), which account for over 80% of chromatin linker histones, and four minor variants: H1C, H1D, H1E and H1F. We have shown previously [M. Prymakowska-Bosak et al. (1999) Plant Cell 11:2317–2329] that reversal of the natural proportion of major to minor H1 variants in transgenic tobacco(More)
Proteins belonging to the conserved and diversified Snf2 family provide the ATP-driven motor subunits for remodelling systems, which control the accessibility of chromatin DNA. The 41 proteins of this family encoded in the Arabidopsis genome fall into 19 distinct subfamilies. Although most of the plant Snf2 proteins studied so far retain the functional(More)
The multiprotein complexes involved in active dis-ruption of chromatin structure, homologous to yeast SWI/SNF complex, have been described for human and Drosophila cells. In all SWI/SNF-class complexes characterised so far, one of the key components is the SNF5-type protein. Here we describe the isolation of a plant (Arabidopsis thaliana ) cDNA encoding a(More)