Learn More
Histone H1 is an abundant component of eukaryotic chromatin that is thought to stabilize higher-order chromatin structures. However, the complete knock-out of H1 genes in several lower eukaryotes has no discernible effect on their appearance or viability. In higher eukaryotes, the presence of many mutually compensating isoforms of this protein has made(More)
SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin-remodeling complexes mediate ATP-dependent alterations of DNA-histone contacts. The minimal functional core of conserved SWI/SNF complexes consists of a SWI2/SNF2 ATPase, SNF5, SWP73, and a pair of SWI3 subunits. Because of early duplication of the SWI3 gene family in plants, Arabidopsis thaliana encodes four(More)
ATP-dependent nucleosome remodeling plays a central role in the regulation of access to chromatin DNA. Swi/Snf remodeling complexes characterized in yeast, Drosophila and mammals all contain a conserved set of core subunits composed of homologs of yeast SNF2-type DNA-dependent ATPase, SNF5 and SWI3 proteins. So far, no complete Swi/Snf-type complex has been(More)
  • J Brzeski, W Podstolski, K Olczak, A Jerzmanowski
  • 1999
The multiprotein complexes involved in active dis-ruption of chromatin structure, homologous to yeast SWI/SNF complex, have been described for human and Drosophila cells. In all SWI/SNF-class complexes characterised so far, one of the key components is the SNF5-type protein. Here we describe the isolation of a plant (Arabidopsis thaliana ) cDNA encoding a(More)
In vivo, histone H1 plays an active role in establishing the transcriptionally repressed chromatin state of the oocyte-type 5S RNA genes in the early stages of Xenopus development. By using fully defined in vitro system of chromatin assembly on plasmids with cloned oocyte- or somatic-type 5S gene repeats we found that the oocyte repeat which comprises a 120(More)
In yeast and mammals, ATP-dependent chromatin remodelling complexes of the SWI/SNF family play critical roles in the regulation of transcription, cell proliferation, differentiation and development. Homologues of conserved subunits of SWI/SNF-type complexes, including Snf2-type ATPases and SWI3-type proteins, participate in analogous processes in(More)
SWI/SNF chromatin remodeling complexes perform a pivotal function in the regulation of eukaryotic gene expression. Arabidopsis (Arabidopsis thaliana) mutants in major SWI/SNF subunits display embryo-lethal or dwarf phenotypes, indicating their critical role in molecular pathways controlling development and growth. As gibberellins (GA) are major positive(More)
Linker histones (H1s) are conserved and ubiquitous structural components of eukaryotic chromatin. Multiple non-allelic variants of H1, which differ in their DNA/nucleosome binding properties, co-exist in animal and plant cells and have been implicated in the control of genetic programs during development and differentiation. Studies in mammals and(More)
The pathogenesis of cluster headache remains unexplained and the immunological mechanisms have not been studied in this disease. Suspecting a possible allergic character of headache attacks it was decided to determine the haemolytic activity of the complement system and the levels of its C3 and C4 components. The investigations were carried out in 11(More)
  • 1