Andrzej Borowiec

Learn More
It has been recently shown that, in the first order (Palatini) formalism , there is universality of Einstein equations and Komar energy– momentum complex, in the sense that for a generic nonlinear La-grangian depending only on the scalar curvature of a metric and a torsionless connection one always gets Einstein equations and Komar's expression for the(More)
The concept of a crossed tensor product of algebras is studied from a few points of views. Some related constructions are considered. Crossed enveloping algebras and their representations are discussed. Applications to the noncommutative geometry and particle systems with generalized statistics are indicated.
We demonstrate a polarization-managed 8-dimensional modulation format that is time domain coded to reduce inter-channel nonlinearity. Simulation results show a 2.33 dB improvement in maximum net system margin (NSM) relative to polarization multiplexed (PM)-BPSK, and a 1.0 dB improvement relative to time interleaved return to zero (RZ)-PM-BPSK, for a five(More)
We investigate the covariant formulation of Chern-Simons theories in a general odd dimension which can be obtained by introducing a vacuum connection field as a reference. Field equations, Nöther currents and superpotentials are computed so that results are easily compared with the well-known results in dimension 3. Finally we use this covariant formulation(More)
It is shown that the first order (Palatini) variational principle for a generic nonlinear metric-affine Lagrangian depending on the (sym-metrized) Ricci square invariant leads to an almost-product Einstein structure or to an almost-complex anti-Hermitian Einstein structure on a manifold. It is proved that a real anti-Hermitian metric on a complex manifold(More)