Learn More
Reduced signaling of insulin-like peptides increases the life-span of nematodes, flies, and rodents. In the nematode and the fly, secondary hormones downstream of insulin-like signaling appear to regulate aging. In mammals, the order in which the hormones act is unresolved because insulin, insulin-like growth factor-1, growth hormone, and thyroid hormones(More)
Neurogenesis occurs throughout adult life in the dentate gyrus of mammalian hippocampus and has been suggested to play an important role in cognitive function. Multiple trophic factors including IGF-I have been demonstrated to regulate hippocampal neurogenesis. Ames dwarf mice live considerably longer than normal animals and maintain physiological function(More)
Aging is a three-stage process: metabolism, damage, and pathology. The biochemical processes that sustain life generate toxins as an intrinsic side effect. These toxins cause damage, of which a small proportion cannot be removed by any endogenous repair process and thus accumulates. This accumulating damage ultimately drives age-related degeneration.(More)
Reduced intake of nutrients [calorie restriction (CR)] extends longevity in organisms ranging from yeast to mammals. Mutations affecting somatotropic, insulin, or homologous signaling pathways can increase life span in worms, flies, and mice, and there is considerable evidence that reduced secretion of insulin-like growth factor I and insulin are among the(More)
Insulin/insulin-like growth factor (IGF) signaling plays a major role in the control of aging and life span in invertebrates. Major extension of life span in growth hormone receptor knock out (GHR-KO) mice that are GH resistant, and subsequently, IGF-I-deficient indicates that similar mechanisms may operate in mammals. This conclusion is supported by(More)
Growth hormone (GH) is a key determinant of postnatal growth and plays an important role in the control of metabolism and body composition. Surprisingly, deficiency in GH signaling delays aging and remarkably extends longevity in laboratory mice. In GH-deficient and GH-resistant animals, the "healthspan" is also extended with delays in cognitive decline and(More)
Using a two-bottle choice paradigm, adult C57BL/6 and DBA/2 mice (11 males an 10 females per strain) were given access to tapwater and an ascending series of concentrations of ethanol, nicotine, amphetamine, and th artificial sweetener, aspartame. The C57 mice consumed more ethanol, nicotine, and amphetamine, and showed greater preferences for these(More)
Although the role of growth hormone (GH) in aging is controversial, the recent production of GH-R-KO mice may provide a means for elucidating its importance. Using the inhibitory avoidance learning task as a measure of cognitive aging, the present study compared learning and retention in young and old GH-R-KO mice and their normal siblings. Results for the(More)