Andrzej A. Jarzecki

Learn More
The new Ru(II) chloroquine complexes [Ru(eta(6)-arene)(CQ)Cl2] (CQ = chloroquine; arene = p-cymene 1, benzene 2), [Ru(eta(6)-p-cymene)(CQ)(H2O)2][BF4]2 (3), [Ru(eta(6)-p-cymene)(CQ)(en)][PF6]2 (en = ethylenediamine) (4), and [Ru(eta(6)-p-cymene)(eta(6)-CQDP)][BF4]2 (5, CQDP = chloroquine diphosphate) have been synthesized and characterized by use of a(More)
A series of tri- and bimetallic titanium-gold, titanium-palladium, and titanium-platinum derivatives of the general formulas [Ti{η(5)-C(5)H(4)(CH(2))(n)PPh(2)(AuCl)}(2)]·2THF [n = 0 (1); n = 2 (2); n = 3 (3)] and [TiCl(2){η(5)-C(5)H(4)κ-(CH(2))(n)PPh(2)}(2)(MCl(2))]·2THF [M = Pd, n = 0 (4); n = 2 (5); n = 3 (6) ; M = Pt, n = 0 (7); n = 2 (8); n = 3 (9)](More)
Control of O2 versus CO binding in myoglobin (Mb) is tuned by a distal histidine residue through steric and H-bonding interactions. These interactions have been evaluated via Car-Parrinello DFT calculations, whose efficiency allows full quantum mechanical treatment of the 13 closest residues surrounding the heme. The small (8 degrees ) deviation of the(More)
Heme proteins are uniquely adapted to bind the important diatomic molecules O(2), NO and CO. An increasing number of heme proteins are being discovered that sense these molecules and thereby regulate a variety of biochemical responses. The interactions of diatomic molecules with heme, and with the surrounding protein, are therefore of great interest. Recent(More)
A mechanism accounting for the robust catalase activity in catalase-peroxidases (KatG) presents a new challenge in heme protein enzymology. In Mycobacterium tuberculosis, KatG is the sole catalase and is also responsible for peroxidative activation of isoniazid, an anti-tuberculosis pro-drug. Here, optical stopped-flow spectrophotometry, rapid freeze-quench(More)
Resonance Raman (RR) spectra are reported for mesoporphyrin IX bound to the Fab fragment of the ferrochelatase antibody 7G12. Binding induces activation of a Raman band at 680 cm(-1), which is assigned to an out-of-plane porphyrin vibration, gamma15. This is exactly the predicted effect of distorting mesoporphyrin to the geometry of N-methylmesoporphyrin(More)
Resonance Raman spectra of porphyrins are computed with DFT/CIS methodology to monitor out-of-plane distortions. A framework is established for assessing protein-induced distortion of porphyrin bound to a ferrochealatase antibody. Tests on undistorted porphyrins give good agreement with the experimental intensity pattern of in-plane modes for free-base(More)
Combining quantum and molecular mechanics (QM/MM) methods and protein structure prediction algorithms, helix and loop movements are computed along the pathway of CO dissociation from myoglobin (Mb). The results are compared with high-resolution crystallographic data using sequence-displacement graphs. These graphs provide an unbiased method for evaluating(More)
The basis of the respective regiospecificities of intradiol and extradiol dioxygenase is poorly understood and may be linked to the protonation state of the bidentate-bound catechol in the enzyme/substrate complex. Previous ultraviolet resonance Raman (UVRR) and UV-visible (UV-vis) difference spectroscopic studies demonstrated that, in extradiol(More)
Although siderophores are generally viewed as biological iron uptake agents, recent evidence has shown that they may play significant roles in the biogeochemical cycling and biological uptake of other metals. One such siderophore that is produced by A. vinelandii is the triscatecholate protochelin. In this study, we probe the solution chemistry of(More)