Learn More
This article is an introduction to the special issue of the journal PROTEINS, dedicated to the ninth Critical Assessment of Structure Prediction (CASP) experiment to assess the state of the art in protein structure modeling. The article describes the conduct of the experiment, the categories of prediction included, and outlines the evaluation and assessment(More)
This article is an introduction to the special issue of the journal Proteins, dedicated to the eighth CASP experiment to assess the state of the art in protein structure prediction. The article describes the conduct of the experiment, the categories of prediction included, and outlines the evaluation and assessment procedures. Highlights are the first blind(More)
The article presents our evaluation of the predictions submitted to the model quality assessment (QA) category in CASP7. In this newly introduced category, predictors were asked to provide quality estimates for protein structure models. The QA category uses the automatically produced models that are traditionally distributed to CASP participants as input(More)
Lack of stable three-dimensional structure, or intrinsic disorder, is a common phenomenon in proteins. Naturally, unstructured regions are proven to be essential for carrying function by many proteins, and therefore identification of such regions is an important issue. CASP has been assessing the state of the art in predicting disorder regions from amino(More)
The article presents the assessment of disorder region predictions submitted to CASP10. The evaluation is based on the three measures tested in previous CASPs: (i) balanced accuracy, (ii) the Matthews correlation coefficient for the binary predictions, and (iii) the area under the curve in the receiver operating characteristic (ROC) analysis of predictions(More)
This work presents the results of the assessment of the intramolecular residue-residue contact predictions submitted to CASP9. The methodology for the assessment does not differ from that used in previous CASPs, with two basic evaluation measures being the precision in recognizing contacts and the difference between the distribution of distances in the(More)
The strategy for evaluating template-based models submitted to CASP has continuously evolved from CASP1 to CASP5, leading to a standard procedure that has been used in all subsequent editions. The established approach includes methods for calculating the quality of each individual model, for assigning scores based on the distribution of the results for each(More)
CASP has now completed a decade of monitoring the state of the art in protein structure prediction. The quality of structure models produced in the latest experiment, CASP6, has been compared with that in earlier CASPs. Significant although modest progress has again been made in the fold recognition regime, and cumulatively, progress in this area is(More)
We compare results of the community efforts in modeling protein structures in the tenth CASP experiment, with those in earlier CASPs particularly in CASP5, a decade ago. There is a substantial improvement in template based model accuracy as reflected in more successful modeling of regions of structure not easily derived from a single experimental structure(More)
The Protein Structure Prediction Center at the University of California, Davis, supports the CASP experiments by identifying prediction targets, accepting predictions, performing standard evaluations, assisting independent CASP assessors, presenting and archiving results, and facilitating information exchange relating to CASP and structure prediction in(More)