Andriy Chmyrov

Learn More
Given the particular importance of dye photostability for single-molecule and fluorescence fluctuation spectroscopy investigations, refined strategies were explored for how to chemically retard dye photobleaching. These strategies will be useful for fluorescence correlation spectroscopy (FCS), fluorescence-based confocal single-molecule detection (SMD) and(More)
We show that nanoscopy based on the principle called RESOLFT (reversible saturable optical fluorescence transitions) or nonlinear structured illumination can be effectively parallelized using two incoherently superimposed orthogonal standing light waves. The intensity minima of the resulting pattern act as 'doughnuts', providing isotropic resolution in the(More)
Up to now, all demonstrations of reversible saturable optical fluorescence transitions (RESOLFT) superresolution microscopy of living cells have relied on the use of reversibly switchable fluorescent proteins (RSFP) emitting in the green spectral range. Here we show RESOLFT imaging with rsCherryRev1.4, a new red-emitting RSFP enabling a spatial resolution(More)
Electrostatic interactions between dielectric surfaces and different fluorophores used in ultrasensitive fluorescence microscopy are investigated using objective-based Total Internal Reflection Fluorescence Correlation Spectroscopy (TIR-FCS). The interfacial dynamics of cationic rhodamine 123 and rhodamine 6G, anionic/dianionic fluorescein, zwitterionic(More)
In this work, fluorescence correlation spectroscopy (FCS) was used to investigate the effects of potassium iodide (KI) on the electronic-state population kinetics of a range of organic dyes in the visible wavelength range. Apart from a heavy atom effect promoting intersystem crossing to the triplet states in all dyes, KI was also found to enhance the(More)
Inter- or intramolecular distances of biomolecules can be studied by Förster resonance energy transfer (FRET). For most FRET methods, the observable range of distances is limited to 1-10 nm, and the labeling efficiency has to be controlled carefully to obtain accurate distance determinations, especially for intensity-based methods. In this study, we exploit(More)
Fluorescence microscopy is rapidly turning into nanoscopy. Among the various nanoscopy methods, the STED/RESOLFT super-resolution family has recently been expanded to image even large fields of view within a few seconds. This advance relies on using light patterns featuring substantial arrays of intensity minima for discerning features by switching their(More)
The triplet-state kinetics of several fluorescent dyes used in ultrasensitive fluorescence microscopy are investigated using total internal reflection fluorescence correlation spectroscopy (TIR-FCS). A theoretical outline of the correlation analysis and the physical aspects of evanescent excitation and fluorescence emission at dielectric interfaces are(More)
An approach to study bimolecular interactions in model lipid bilayers and biological membranes is introduced, exploiting the influence of membrane-associated electron spin resonance labels on the triplet state kinetics of membrane-bound fluorophores. Singlet-triplet state transitions within the dye Lissamine Rhodamine B (LRB) were studied, when free in(More)