Andrey Zhmoginov

Learn More
Physicists have long wondered whether the gravitational interactions between matter and antimatter might be different from those between matter and itself. Although there are many indirect indications that no such differences exist and that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on(More)
Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become(More)
The properties of antihydrogen are expected to be identical to those of hydrogen, and any differences would constitute a profound challenge to the fundamental theories of physics. The most commonly discussed antiatom-based tests of these theories are searches for antihydrogen-hydrogen spectral differences (tests of CPT (charge-parity-time) invariance) or(More)
Deep neural networks have dramatically advanced the state of the art for many areas of machine learning. Recently they have been shown to have a remarkable ability to generate highly complex visual artifacts such as images and text rather than simply recognize them. In this work we use neural networks to effectively invert low-dimensional face embeddings(More)
Deep convolutional networks are well-known for their high computational and memory demands. Given limited resources, how does one design a network that balances its size, training time, and prediction accuracy? A surprisingly effective approach to trade accuracy for size and speed is to simply reduce the number of channels in each convolutional layer by a(More)
We describe a light-pulse atom interferometer that is suitable for any species of atom and even for electrons and protons as well as their antiparticles, in particular, for testing the Einstein equivalence principle with antihydrogen. The design obviates the need for resonant lasers through far-off resonant Bragg beam splitters and makes efficient use of(More)
The influence of gravity on anti-hydrogen dynamics in magnetic traps is studied. The advantages and disadvantages of various techniques for measuring the ratio of the gravitational mass to the inertial mass of anti-hydrogen are discussed. Theoretical considerations and numerical simulations indicate that stochasticity may be especially important for some(More)
Assuming hydrogen is charge neutral, CPT invariance demands that anti-hydrogen also be charge neutral. Quantum anomaly cancellation also demands that antihydrogen be charge neutral. Standard techniques based on measurements of macroscopic quantities of atoms cannot be used to measure the charge of antihydrogen. In this paper, we describe how the application(More)
The influence of gravity on antihydrogen dynamics in magnetic traps is studied. The advantages and disadvantages of various techniques for measuring the ratio of the gravitational mass to the inertial mass of antihydrogen are discussed. Theoretical considerations and numerical simulations indicate that stochasticity may be especially important for some(More)
Knowledge of the residual gas composition in the ALPHA experiment apparatus is important in our studies of antihydrogen and nonneutral plasmas. A technique based on autoresonant ion extraction from an electrostatic potential well has been developed that enables the study of the vacuum in our trap. Computer simulations allow an interpretation of our(More)
  • 1