Learn More
Control over the interaction between single photons and individual optical emitters is an outstanding problem in quantum science and engineering. It is of interest for ultimate control over light quanta, as well as for potential applications such as efficient photon collection, single-photon switching and transistors, and long-range optical coupling of(More)
The bias voltage applied to a weakly coupled n-doped GaAs/AlAs superlattice increases the amplitude of the coherent hypersound oscillations generated by a femtosecond optical pulse. This bias-induced amplitude increase and experimentally observed spectral narrowing of the superlattice phonon mode with a frequency 441 GHz provides the evidence for hypersound(More)
Driven primarily by scientific curiosity, but also by the potential applications of intense sources of coherent sound, researchers have targeted the phonon laser (saser) since the invention of the optical laser over 50 years ago. Here we fabricate a vertical cavity structure designed to operate as a saser oscillator device at a frequency of 325 GHz. It is(More)
We show that the magnetization of a thin ferromagnetic (Ga,Mn)As layer can be modulated by picosecond acoustic pulses. In this approach a picosecond strain pulse injected into the structure induces a tilt of the magnetization vector M, followed by the precession of M around its equilibrium orientation. This effect can be understood in terms of changes in(More)
Hybrid quantum devices, in which dissimilar quantum systems are combined in order to attain qualities not available with either system alone, may enable far-reaching control in quantum measurement, sensing, and information processing. A paradigmatic example is trapped ultracold atoms, which offer excellent quantum coherent properties, coupled to nanoscale(More)
The elastic coupling between the a-SiO2 spheres composing opal films brings forth three-dimensional periodic structures which besides a photonic stop band are predicted to also exhibit complete phononic band gaps. The influence of elastic crystal vibrations on the photonic band structure has been studied by injection of coherent hypersonic wave packets(More)
We demonstrate an all-optical method for magnetic sensing of individual molecules in ambient conditions at room temperature. Our approach is based on shallow nitrogen-vacancy (NV) centers near the surface of a diamond crystal, which we use to detect single paramagnetic molecules covalently attached to the diamond surface. The manipulation and readout of the(More)
We present the first experimental investigation of ultrafast optical switching in a three-dimensional photonic crystal made of a Si-opal composite. Ultrafast (30 fs) changes in reflectivity around the photonic stop band up to 1% were measured for moderate pump power (70 microJ/cm(2)). Short-lived photoexcited carriers in silicon induce changes in the(More)
Acoustic solitons formed during the propagation of a picosecond strain pulse in a GaAs crystal with a ZnSe/ZnMgSSe quantum well on top lead to exciton resonance energy shifts of up to 10 meV, and ultrafast frequency modulation, i.e., chirping, of the exciton transition. The effects are well described by a theoretical analysis based on the Korteweg-de Vries(More)
The conventional piezospectroscopic effect is extended to picosecond time scales by using ultrashort strain pulses injected into semiconductor heterostructures. The strain pulses with durations of approximately 10 ps are generated in a metal transducer film by intense femtosecond laser pulses. They propagate coherently in the GaAs/(Al,Ga)As heterostructure(More)