Andrey M Lipaev

Learn More
The plasma crystal experiment PKE–Nefedov, the first basic science experiment on the International Space Station (ISS), was installed in February 2001 by the first permanent crew. It is designed for long-term investigations of complex plasmas under microgravity conditions. ‘Complex plasmas’ contain ions, electrons, neutrals and small solid(More)
The first experiment on the decharging of a complex plasma in microgravity conditions was conducted. After switching off the rf power, in the afterglow plasma, ions and electrons rapidly recombine and leave a cloud of charged microparticles. Because of microgravity, the particles remain suspended in the experimental chamber for a sufficiently long time,(More)
The dynamical onset of lane formation is studied in experiments with binary complex plasmas under microgravity conditions. Small microparticles are driven and penetrate into a cloud of big particles, revealing a strong tendency towards lane formation. The observed time-resolved lane-formation process is in good agreement with computer simulations of a(More)
We report the experimental discovery of "electrorheological (ER) complex plasmas," where the control of the interparticle interaction by an externally applied electric field is due to distortion of the Debye spheres that surround microparticles (dust) in a plasma. We show that interactions in ER plasmas under weak ac fields are mathematically equivalent to(More)
The occurrence of liquid-vapor phase transition and the possible existence of a critical point in complex plasmas--systems that consist of charged micrograins in a neutralizing plasma background--is investigated theoretically. An analysis based on the consideration of the intergrain interaction potential suggests that under certain conditions systems near(More)
Diagnostic methods are developed to measure the microparticle charge Q and two plasma parameters, electron temperature Te, and ion density ni, in the main plasma region of a dusty plasma. Using video microscopy to track microparticles yields a resonance frequency, which along with a charging model allows an estimation of Q and Te. Only measurements of(More)
A linear dispersion relation in a highly collisional complex plasma, including ion drift, was derived in the light of recent PKE-Nefedov wave experiment performed under microgravity conditions onboard the International Space Station. Two modifications of dust density waves with wave frequencies larger than the dust-neutral collision frequency were obtained.(More)
We consider the multiple-scattering and forward-scattering corrections to the transmission measurements in the case of a detector with a variable field of view. The transmission functions for predicting the angular distribution of forward-scattering transmittance are proposed. We present results of measurements of transmission functions for polystyrene(More)
Freezing and melting of large three-dimensional complex plasmas under microgravity conditions is investigated. The neutral gas pressure is used as a control parameter to trigger the phase changes: Complex plasma freezes (melts) by decreasing (increasing) the pressure. The evolution of complex plasma structural properties upon pressure variation is studied.(More)
We propose a method of determination of the dust particle spatial distribution in dust clouds that form in three-dimensional (3D) complex plasmas under microgravity conditions. The method utilizes the data obtained during the 3D scanning of a cloud, and it provides reasonably good accuracy. Based on this method, we investigate the particle density in a dust(More)