Andrey Bakin

Learn More
Zinc oxide (ZnO), with its excellent luminescent properties and the ease of growth of its nanostructures, holds promise for the development of photonic devices. The recent advances in growth of ZnO nanorods are discussed. Results from both low temperature and high temperature growth approaches are presented. The techniques which are presented include(More)
The electrical properties of single ZnO nanowires grown by vapor phase transport were investigated. While some samples were contacted by Ti/Au electrodes, another set of samples was investigated using a manipulator tip in a low energy electron point-source microscope. The deduced resistivities range from 1 to 10(3) Ωcm. Additionally, the resistivities of(More)
The magneto-Stark effect of excitons is demonstrated to be an efficient source of optical nonlinearity in hexagonal ZnO. Strong resonant second harmonic generation signals induced by an external magnetic field are observed in the spectral range of 2s and 2p excitons. The microscopic theoretical analysis shows that for excitons with a finite wave vector,(More)
The electrical properties of high-resistivity zinc oxide (ZnO) bulk and epi-samples are strongly influenced by the sample ambient. Bulk samples that are highly resistive in ambient air can be reversibly transformed into a high conducting state under vacuum. As an explanation we suggest a conducting electron channel at the ZnO surface. Under vacuum this(More)
We investigated GaN-based heterostructures grown on three-dimensionally patterned Si(111) substrates by metal organic vapour phase epitaxy, with the goal of fabricating well controlled high quality, defect reduced GaN-based nanoLEDs. The high aspect ratios of such pillars minimize the influence of the lattice mismatched substrate and improve the material(More)
Vertically aligned gallium nitride (GaN) nanowire (NW) arrays have attracted a lot of attention because of their potential for novel devices in the fields of optoelectronics and nanoelectronics. In this work, GaN NW arrays have been designed and fabricated by combining suitable nanomachining processes including dry and wet etching. After inductively coupled(More)
Plasmonic or exciton/plasmon (plexcitonic) systems are presently described based on electromagnetic models, ignoring the need for an improved microscopic understanding. This is based on the fact that a full quantum mechanical approach on a micrometer scale still represents a considerable challenge. In this paper we report on the experimental observation of(More)