Andrey A. Mironov

Learn More
The riboflavin biosynthesis in bacteria was analyzed using comparative analysis of genes, operons and regulatory elements. A model for regulation based on formation of alternative RNA structures involving the RFN elements is suggested. In Gram-positive bacteria including actinomycetes, Thermotoga, Thermus and Deinococcus, the riboflavin metabolism and(More)
The increasing volume of genomic data opens new possibilities for analysis of protein function. We introduce a method for automated selection of residues that determine the functional specificity of proteins with a common general function (the specificity-determining positions [SDP] prediction method). Such residues are assumed to be conserved within groups(More)
Using comparative analysis of genes, operons, and regulatory elements, we describe the cobalamin (vitamin B12) biosynthetic pathway in available prokaryotic genomes. Here we found a highly conserved RNA secondary structure, the regulatory B12 element, which is widely distributed in the upstream regions of cobalamin biosynthetic/transport genes in(More)
SDPpred (Specificity Determining Position prediction) is a tool for prediction of residues in protein sequences that determine the proteins' functional specificity. It is designed for analysis of protein families whose members have biochemically similar but not identical interaction partners (e.g. different substrates for a family of transporters). SDPpred(More)
Zinc is an important component of many proteins, but in large concentrations it is poisonous to the cell. Thus its transport is regulated by zinc repressors ZUR of proteobacteria and Gram-positive bacteria from the Bacillus group and AdcR of bacteria from the Streptococcus group. Comparative computational analysis allowed us to identify binding signals of(More)
Vitamin B(1) in its active form thiamin pyrophosphate is an essential coenzyme that is synthesized by coupling of pyrimidine (hydroxymethylpyrimidine; HMP) and thiazole (hydroxyethylthiazole) moieties in bacteria. Using comparative analysis of genes, operons, and regulatory elements, we describe the thiamin biosynthetic pathway in available bacterial(More)
MOTIVATION Transcription regulatory protein factors often bind DNA as homo-dimers or hetero-dimers. Thus they recognize structured DNA motifs that are inverted or direct repeats or spaced motif pairs. However, these motifs are often difficult to identify owing to their high divergence. The motif structure included explicitly into the motif recognition(More)
Regulation of the methionine biosynthesis and transport genes in bacteria is rather diverse and involves two RNA-level regulatory systems and at least three DNA-level systems. In particular, the methionine metabolism in Gram-positive bacteria was known to be controlled by the S-box and T-box mechanisms, both acting on the level of premature termination of(More)
RegPredict web server is designed to provide comparative genomics tools for reconstruction and analysis of microbial regulons using comparative genomics approach. The server allows the user to rapidly generate reference sets of regulons and regulatory motif profiles in a group of prokaryotic genomes. The new concept of a cluster of co-regulated orthologous(More)
Riboswitches are structures that form in mRNA and regulate gene expression in bacteria. Unlike other known RNA regulatory structures, they are directly bound by small ligands. The mechanism by which gene expression is regulated involves the formation of alternative structures that, in the repressing conformation, cause premature termination of transcription(More)