Andrey A. Komissarov

Learn More
Plasminogen activator inhibitor 1 (PAI-1) level is extremely elevated in the edematous fluid of acutely injured lungs and pleurae. Elevated PAI-1 specifically inactivates pulmonary urokinase-type (uPA) and tissue-type plasminogen activators (tPA). We hypothesized that plasminogen activation and fibrinolysis may alter epithelial sodium channel (ENaC)(More)
Plasminogen activator inhibitor 1 (PAI-1) levels are elevated in a number of life-threatening conditions and often correlate with unfavorable outcomes. Spontaneous inactivation due to active to latent transition limits PAI-1 activity in vivo. While endogenous vitronectin (Vn) stabilizes PAI-1 by 1.5-2.0-fold, further stabilization occurs in a "molecular(More)
Malignant pleural mesothelioma (MPM) is a lethal neoplasm for which current therapy is unsatisfactory. The urokinase plasminogen activator receptor (uPAR) is associated with increased virulence of many solid neoplasms, but its role in the pathogenesis of MPM is currently unclear. We found that REN human pleural MPM cells expressed 4- to 10-fold more uPAR(More)
The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential therapeutic target in cardiovascular and cancerous diseases. PAI-1 circulates in blood as a complex with vitronectin. A PAI-1 variant (N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-3-diazole (NBD) P9 PAI-1) with a fluorescent tag at the reactive center loop (RCL) was used to(More)
BACKGROUND Activated protein C (APC) reduces mortality in severe sepsis. Protecting APC in the circulatory system from inactivation by serine protease inhibitors (serpins) could improve its therapeutic efficiency. Significantly elevated levels of a serpin plasminogen activator inhibitor 1 (PAI-1) correlate with a lethal outcome in severe sepsis and(More)
The increased levels of extracellular DNA found in a number of disorders involving dysregulation of the fibrinolytic system may affect interactions between fibrinolytic enzymes and inhibitors. Double-stranded (ds) DNA and oligonucleotides bind tissue-(tPA) and urokinase (uPA)-type plasminogen activators, plasmin, and plasminogen with submicromolar affinity.(More)
Although aberrant fibrinolysis and plasminogen activator inhibitor 1 (PAI-1) are implicated in acute lung injury, the role of this serpin in the pathogenesis of wood bark smoke (WBS)-induced acute lung injury (SIALI) and its regulation in resident lung cells after exposure to smoke are unclear. A total of 22 mechanically ventilated pigs were included in(More)
Mechanism-based inhibition of proteinases by serpins involves enzyme acylation and fast insertion of the reactive center loop (RCL) into the central beta-sheet of the serpin, resulting in mechanical inactivation of the proteinase. We examined the effects of ligands specific to alpha-helix F (alphaHF) of plasminogen activator inhibitor-1 (PAI-1) on the(More)
The proenzyme single-chain urokinase plasminogen activator (scuPA) more effectively resolved intrapleural loculations in rabbits with tetracycline (TCN)-induced loculation than a range of clinical doses of two-chain uPA (Abbokinase) and demonstrated a trend toward greater efficacy than single-chain tPA (Activase) (Idell S et al., Exp Lung Res 33: 419,(More)
The first step of the reaction catalyzed by the homodimeric FabH from a dissociated fatty acid synthase is acyl transfer from acyl-CoA to an active site cysteine. We report that C1 to C10 alkyl-CoA disulfides irreversibly inhibit Escherichia coli FabH (ecFabH) and Mycobacterium tuberculosis FabH with relative efficiencies that reflect these enzymes'(More)