Learn More
A BaGa<sub>4</sub>Se<sub>7</sub> nanosecond optical parametric oscillator (OPO) shows extremely wide idler tunability in the mid-IR (2.7-17 μm) under 1.064 μm pumping. The ∼10  ns pulses at ∼7.2  μm have an energy of 3.7 mJ at 10 Hz. The pump-to-idler conversion efficiency for this wavelength reaches 5.9% with a slope of 6.5% corresponding to a quantum(More)
An overall quantum conversion efficiency of 7.8% is achieved by intracavity mixing the signal and idler of a 1.064 μm pumped Rb:PPKTP optical parametric oscillator in BaGa<sub>4</sub>Se<sub>7</sub>. In this way, a pulse energy of ∼0.71  mJ is generated at ∼7  μm for a repetition rate of 100 Hz. Tuning of the mid-IR radiation is demonstrated by heating of(More)
A human exhaled air analysis by means of infrared (IR) laser photoacoustic spectroscopy is presented. Eleven healthy nonsmoking volunteers (control group) and seven patients with chronic obstructive pulmonary disease (COPD, target group) were involved in the study. The principal component analysis method was used to select the most informative ranges of the(More)
A AgGaSe2 nonlinear crystal placed in a coupled cavity is intracavity pumped by the ~1.85-µm signal pulses of a 1.064-µm pumped Rb:PPKTP doubly-resonant optical parametric oscillator (OPO) operating at a repetition rate of 100 Hz. Using two samples cut for type-I and II phase-matching, the overall idler tunability of the singly-resonant AgGeSe2 OPO covers(More)
Fine ultrastructure of polyvalent bacteriophages TT10-27 and KEY isolated from affected with fire blight disease plant tissues, was studied using electron microscopy. Phages have isometric heads connected to short complex tail (TT10-27, C1-morphotype) or long non-contractile tail (KEY B-1 morphotype). Maximum diameter of TT10-27 head, measured as the(More)
A 1.064 μm pumped Rb:PPKTP optical parametric oscillator (OPO) generates mid-IR radiation by intracavity mixing the resonant signal and idler waves in AgGaSe<sub>2</sub>. The ∼6  ns pulses at ∼7  μm have an energy of 670 μJ at 100 Hz, equivalent to an average power of 67 mW. The overall quantum conversion efficiency from 1.064 μm amounts to 8%, and the(More)
  • 1