Andrew Zisserman

Learn More
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3× 3) convolution filters, which shows that a significant improvement on the prior-art configurations can(More)
The Pascal Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted(More)
Craniofacial characteristics are highly informative for clinical geneticists when diagnosing genetic diseases. As a first step towards the high-throughput diagnosis of ultra-rare developmental diseases we introduce an automatic approach that implements recent developments in computer vision. This algorithm extracts phenotypic information from ordinary(More)
We describe an approach to object and scene retrieval which searches for and localizes all the occurrences of a user outlined object in a video. The object is represented by a set of viewpoint invariant region descriptors so that recognition can proceed successfully despite changes in viewpoint, illumination and partial occlusion. The temporal continuity of(More)
The latest generation of Convolutional Neural Networks (CNN) have achieved impressive results in challenging benchmarks on image recognition and object detection, significantly raising the interest of the community in these methods. Nevertheless, it is still unclear how different CNN methods compare with each other and with previous state-of-the-art shallow(More)
We investigate architectures of discriminatively trained deep Convolutional Networks (ConvNets) for action recognition in video. The challenge is to capture the complementary information on appearance from still frames and motion between frames. We also aim to generalise the best performing hand-crafted features within a data-driven learning framework. Our(More)
This paper addresses the visualisation of image classification models, learnt using deep Convolutional Networks (ConvNets). We consider two visualisation techniques, based on computing the gradient of the class score with respect to the input image. The first one generates an image, which maximises the class score [5], thus visualising the notion of the(More)
The Pascal Visual Object Classes (VOC) challenge consists of two components: (i) a publicly available dataset of images together with ground truth annotation and standardised evaluation software; and (ii) an annual competition and workshop. There are five challenges: classification, detection, segmentation, action classification, and person layout. In this(More)
In this paper, we present a large-scale object retrieval system. The user supplies a query object by selecting a region of a query image, and the system returns a ranked list of images that contain the same object, retrieved from a large corpus. We demonstrate the scalability and performance of our system on a dataset of over 1 million images crawled from(More)