Learn More
The evolution of genomic imprinting in mammals occurred more than 100 million years ago, and resulted in the formation of genes that are functionally haploid because of parent-of-origin-dependent expression. Despite ample evidence from studies in a number of species suggesting the presence of imprinted genes on human chromosome 14, their identity has(More)
A small genetic region near the telomere of ovine chromosome 18 was previously shown to carry the mutation causing the callipyge muscle hypertrophy phenotype in sheep. Expression of this phenotype is the only known case in mammals of paternal polar overdominance gene action. A region surrounding two positional candidate genes was sequenced in animals of(More)
M6P/IGF2R imprinting first appeared approximately 150 million years ago following the divergence of prototherian from therian mammals. Although M6P/IGF2R is clearly imprinted in opossums and rodents, its imprint status in humans remains ambiguous. It is also still unknown if M6P/IGF2R imprinting was an ancestral mammalian epigenotype or if it evolved(More)
Heat shock protein 90 (Hsp90) is an emerging target for cancer therapy due to its important role in maintaining the activity and stability of key oncogenic signaling proteins. We show here that the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion protein, presumed to be the oncogenic driver in about 5% of(More)
OBJECTIVES Regulated expression of transferred foreign genes may be an important feature of gene therapy. Because coronary artery disease often involves intermittent myocardial ischaemia followed by periods of normal cardiac function it will probably be necessary to regulate the expression of putative therapeutic/cardioprotective genes directly in response(More)
A small fraction of the genome contains genes that are imprinted and thus expressed exclusively from one parental allele. We report here that the human neuronatin gene (NNAT) on chromosome 20q11.2 is imprinted and transcribed specifically from the paternal allele. The region containing NNAT has multiple CpG islands, and methylation analysis showed that a(More)
Genomic imprinting refers to an epigenetic marking of genes that results in monoallelic expression. This parent-of-origin dependent phenomenon is a notable exception to the laws of Mendelian genetics. Imprinted genes are intricately involved in fetal and behavioral development. Consequently, abnormal expression of these genes results in numerous human(More)
The underlying mechanism of the callipyge muscular hypertrophy phenotype in sheep (Ovis aries) is not presently understood. This phenotype, characterized by increased glycolytic type II muscle proportion and cell size accompanied by decreased adiposity, is not visibly detectable until approximately three to eight weeks after birth. The muscular hypertrophy(More)
The paternally expressed Peg3 gene in mice encodes an unusual Krüppel-type zinc finger protein implicated in critical cellular and behavioral functions including growth, apoptosis, and maternal nurturing behavior. Methylation and expression analyses were used to determine whether PEG3 on chromosome 19q13.4 is imprinted in humans. The PEG3 promoter is(More)
The recent demonstration of genomic imprinting of DLK1 and MEG3 on human chromosome 14q32 indicates that these genes might contribute to the discordant phenotypes associated with uniparental disomy (UPD) of chromosome 14. Regulation of imprinted expression of DLK1 and MEG3 involves a differentially methylated region (DMR) that encompasses the MEG3 promoter.(More)