Learn More
The coat proteins of clathrin-coated vesicles (CCV) spontaneously self-assemble in vitro, but, in vivo, their self-assembly must be regulated. To determine whether phosphorylation might influence coat formation in the cell, the in vivo phosphorylation state of CCV coat proteins was analyzed. Individual components of the CCV coat were isolated by(More)
The guanosine tri-phosphatase Ran stimulates assembly of microtubule spindles. However, it is not known what aspects of the microtubule cytoskeleton are subject to regulation by Ran in mitosis. Here we show that Ran-GTP stimulates microtubule assembly by increasing the rescue frequency of microtubules three- to eightfold. In addition to changing microtubule(More)
The eukaryotic cytoskeleton is essential for structural support and intracellular transport, and is therefore a common target of animal pathogens. However, no phytopathogenic effector has yet been demonstrated to specifically target the plant cytoskeleton. Here we show that the Pseudomonas syringae type III secreted effector HopZ1a interacts with tubulin(More)
TPX2 is a Ran-regulated spindle assembly factor that is required for kinetochore fiber formation and activation of the mitotic kinase Aurora A. TPX2 is enriched near spindle poles and is required near kinetochores, suggesting that it undergoes dynamic relocalization throughout mitosis. Using photoactivation, we measured the movement of PA-GFP-TPX2 in the(More)
Epidermal growth factor (EGF) binding to its receptor causes rapid phosphorylation of the clathrin heavy chain at tyrosine 1477, which lies in a domain controlling clathrin assembly. EGF-mediated clathrin phosphorylation is followed by clathrin redistribution to the cell periphery and is the product of downstream activation of SRC kinase by EGF receptor(More)
The GTPase Ran regulates multiple cellular functions throughout the cell cycle, including nucleocytoplasmic transport, nuclear membrane assembly, and spindle assembly. Ran mediates spindle assembly by affecting multiple spindle assembly pathways: microtubule dynamics, microtubule motor activity, and spindle pole assembly. Ran is predicted to facilitate(More)
The ␥-tubulin ring complex (␥ TuRC), purified from the cytoplasm of vertebrate and invertebrate cells, is a microtubule nucleator in vitro. Structural studies have shown that ␥ TuRC is a structure shaped like a lock-washer and topped with a cap. Microtubules are thought to nucleate from the uncapped side of the ␥ TuRC. Consequently, the cap structure of the(More)
TGN38 is an integral membrane protein previously shown to be predominantly localized to the trans-Golgi network (TGN) of cells by virtue of a signal contained within its cytoplasmic 'tail' [Luzio, Brake, Banting, Howell, Braghetta & Stanley (1990) Biochem. J. 270, 97-102]. We now (i) describe the isolation of cDNA clones encoding an isoform of TGN38, (ii)(More)
Clathrin polymerization into a polyhedral basket, surrounding budding membrane vesicles, mediates protein sorting during endocytosis and organelle biogenesis. Adaptor proteins target clathrin assembly to specific membrane sites and sequester receptors into the clathrin coat. We have reconstituted complete clathrin basket formation from recombinantly(More)
BACKGROUND Vertebrates share the same general body plan and organs, possess related sets of genes, and rely on similar physiological mechanisms, yet show great diversity in morphology, habitat and behavior. Alteration of gene regulation is thought to be a major mechanism in phenotypic variation and evolution, but relatively little is known about the broad(More)