Learn More
BACKGROUND Recent years have seen the emergence of genome annotation methods based on the phylo-grammar, a probabilistic model combining continuous-time Markov chains and stochastic grammars. Previously, phylo-grammars have required considerable effort to implement, limiting their adoption by computational biologists. RESULTS We have developed an open(More)
Classical approaches to determine structures of noncoding RNA (ncRNA) probed only one RNA at a time with enzymes and chemicals, using gel electrophoresis to identify reactive positions. To accelerate RNA structure inference, we developed fragmentation sequencing (FragSeq), a high-throughput RNA structure probing method that uses high-throughput RNA(More)
We performed benchmarks of phylogenetic grammar-based ncRNA gene prediction, experimenting with eight different models of structural evolution and two different programs for genome alignment. We evaluated our models using alignments of twelve Drosophila genomes. We find that ncRNA prediction performance can vary greatly between different gene predictors and(More)
BACKGROUND Non-coding RNAs (ncRNAs) have a multitude of roles in the cell, many of which remain to be discovered. However, it is difficult to detect novel ncRNAs in biochemical screens. To advance biological knowledge, computational methods that can accurately detect ncRNAs in sequenced genomes are therefore desirable. The increasing number of genomic(More)
BACKGROUND High-grade serous ovarian and endometrial cancers are the most lethal female reproductive tract malignancies worldwide. In part, failure to treat these two aggressive cancers successfully centers on the fact that while the majority of patients are diagnosed based on current surveillance strategies as having a complete clinical response to their(More)
The invention of high throughput sequencing technologies has led to the discoveries of hundreds of thousands of genetic variants associated with thousands of human diseases. Many of these genetic variants are located outside the protein coding regions, and as such, it is challenging to interpret the function of these genetic variants by traditional genetic(More)
Assigning cancer patients to the most effective treatments requires an understanding of the molecular basis of their disease. While DNA-based molecular profiling approaches have flourished over the past several years to transform our understanding of driver pathways across a broad range of tumors, a systematic characterization of key driver pathways based(More)
Personalized therapy provides the best outcome of cancer care and its implementation in the clinic has been greatly facilitated by recent convergence of enormous progress in basic cancer research, rapid advancement of new tumor profiling technologies, and an expanding compendium of targeted cancer therapeutics. We developed a personalized cancer therapy(More)
Data from a plethora of high-throughput sequencing studies is readily available to researchers, providing genetic variants detected in a variety of healthy and disease populations. While each individual cohort helps gain insights into polymorphic and disease-associated variants, a joint perspective can be more powerful in identifying polymorphisms, rare(More)
  • 1