Learn More
Brain atlases are widely used in experimental neuroscience as tools for locating and targeting specific brain structures. Delineated structures in a given atlas, however, are often difficult to interpret and to interface with database systems that supply additional information using hierarchically organized vocabularies (ontologies). Here we discuss the(More)
Progress in functional neuroimaging of the brain increasingly relies on the integration of data from complementary imaging modalities in order to improve spatiotemporal resolution and interpretability. However, the usefulness of merely statistical combinations is limited, since neural signal sources differ between modalities and are related non-trivially.(More)
Recent applications of network theory to brain networks as well as the expanding empirical databases of brain architecture spawn an interest in novel techniques for analyzing connectivity patterns in the brain. Treating individual brain structures as nodes in a directed graph model permits the application of graph theoretical concepts to the analysis of(More)
Emerging noninvasive neuroimaging techniques allow for the morphometric analysis of patterns of gray and white matter degeneration in vivo, which may help explain and predict the occurrence of cognitive impairment and Alzheimer's disease. A single center prospective follow-up study (Radboud University Nijmegen Diffusion tensor and Magnetic resonance imaging(More)
Although information flow in the neocortex has an apparent hierarchical organization, there is much ambiguity with respect to the definition of such a hierarchy, particularly in higher cortical regions. This ambiguity has been addressed by utilizing observable anatomical criteria, based upon tract tracing experiments, to constrain the definition of(More)
Brain activity can be measured with several non-invasive neuroimaging modalities, but each modality has inherent limitations with respect to resolution, contrast and interpretability. It is hoped that multimodal integration will address these limitations by using the complementary features of already available data. However, purely statistical integration(More)
Although gait disturbances are present in a substantial portion of patients with cerebral small vessel disease (SVD), their pathogenesis has not been clarified as they are not entirely explained by the white matter lesions (WMLs) and lacunar infarcts. The role of cortical thickness in these patients remains largely unknown. We aimed to assess the regions of(More)
In a recent paper (Reid et al., 2009) we introduced a method to calculate optimal hierarchies in the visual network that utilizes continuous, rather than discrete, hierarchical levels, and permits a range of acceptable values rather than attempting to fit fixed hierarchical distances. There, to obtain a hierarchy, the sum of deviations from the constraints(More)
Norepinephrine has been hypothesized to provide a learning and memory signal. Norepinephrine long-term potentiation of perforant path input to the dentate gyrus of the hippocampus provides a model for norepinephrine initiated memory processes. However, in vitro, the pairing of perforant path stimulation and norepinephrine is not required for the occurrence(More)
BACKGROUND AND PURPOSE White matter hyperintensities (WMH) are associated with clinically heterogeneous symptoms that cannot be explained by these lesions alone. It is hypothesized that these lesions are associated with distant cortical atrophy and cortical thickness network measures, which can result in an additional cognitive impairment. Here, we(More)