Learn More
Snow is a challenging natural phenomenon to visually simulate. While the graphics community has previously considered accumulation and rendering of snow, animation of snow dynamics has not been fully addressed. Additionally, existing techniques for solids and fluids have difficulty producing convincing snow results. Specifically, <i>wet</i> or <i>dense</i>(More)
We present a new algorithm for near-interactive simulation of skeleton driven, high resolution elasticity models. Our methodology is used for soft tissue deformation in character animation. The algorithm is based on a novel discretization of corotational elasticity over a hexahedral lattice. Within this framework we enforce positive definiteness of the(More)
Vorticity confinement reintroduces the small scale detail lost when using efficient semi-Lagrangian schemes for simulating smoke and fire. However, it only amplifies the existing vorticity, and thus can be insufficient for highly turbulent effects such as explosions or rough water. We introduce a new hybrid technique that makes synergistic use of Lagrangian(More)
The back and forth error compensation and correction (BFECC) method advects the solution forward and then backward in time. The result is compared to the original data to estimate the error. Although inappropriate for parabolic and other non-reversible partial differential equations, it is useful for often troublesome advection terms. The error estimate is(More)
We present a physically based system for creating animations of novel words and phrases from text and audio input based on the analysis of motion captured speech examples. Leading image based techniques exhibit photo-real quality, yet lack versatility especially with regard to interactions with the environment. Data driven approaches that use motion capture(More)
Hair simulation remains one of the most challenging aspects of creating virtual characters. Most research focuses on handling the massive geometric complexity of hundreds of thousands of interacting hairs. This is accomplished either by using brute force simulation or by reducing degrees of freedom with guide hairs. This paper presents a hybrid(More)
We present a novel method for solid/fluid coupling that can treat infinitesimally thin solids modeled by a lower dimensional triangulated surface. Since classical solid/fluid coupling algorithms rasterize the solid body onto the fluid grid, an entirely new approach is required to treat thin objects that do not contain an interior region. Robust ray casting(More)
The particle level set method has proven successful for the simulation of <i>two</i> separate regions (such as water and air, or fuel and products). In this paper, we propose a novel approach to extend this method to the simulation of as many regions as desired. The various regions can be liquids (or gases) of any type with differing viscosities, densities,(More)