Andrew S. LaCroix

Learn More
Tendon is a highly specialized, hierarchical tissue designed to transfer forces from muscle to bone; complex viscoelastic and anisotropic behaviors have been extensively characterized for specific subsets of tendons. Reported mechanical data consistently show a pseudoelastic, stress-vs.-strain behavior with a linear slope after an initial toe region. Many(More)
Small solutes affect protein and nucleic acid processes because of favorable or unfavorable chemical interactions of the solute with the biopolymer surface exposed or buried in the process. Large solutes also exclude volume and affect processes where biopolymer molecularity and/or shape changes. Here, we develop an analysis to separate and interpret or(More)
Due to an increased appreciation for the importance of mechanical stimuli in many biological contexts, an interest in measuring the forces experienced by specific proteins in living cells has recently emerged. The development and use of Förster resonance energy transfer (FRET)-based molecular tension sensors has enabled these types of studies and led to(More)
Tendon mechanical properties are thought to degrade during aging but improve with exercise. A remaining question is whether exercise in aged animals provides sufficient regenerative, systemic stimulus to restore younger mechanical behaviors. Herein we address that question with tail tendons from aged and exercised rats, which would be subject to systemic(More)
Mechanical stimuli are known to be potent regulators of the form and function of cells and organisms. Although biological regulation has classically been understood in terms of principles from solution biochemistry, advancements in many fields have led to the development of a suite of techniques that are able to reveal the interplay between mechanical(More)
  • 1