Andrew S. Kowalski

Learn More
Carbon exchange between the terrestrial biosphere and the atmosphere is one of the key processes that need to be assessed in the context of the Kyoto Protocol. Several studies suggest that the terrestrial biosphere is gaining carbon, but these estimates are obtained primarily by indirect methods, and the factors that control terrestrial carbon exchange, its(More)
Temperate and boreal forests in the Northern Hemisphere cover an area of about 2 x 10(7) square kilometres and act as a substantial carbon sink (0.6-0.7 petagrams of carbon per year). Although forest expansion following agricultural abandonment is certainly responsible for an important fraction of this carbon sink activity, the additional effects on the(More)
An intercomparison study of two methods for estimating forest soil CO2 efflux was conducted during a 3-week period in summer. An empirical model established from nearly 2 years of chamber measurements predicted that the soil CO2 efflux ranged from 1.2 to 1.4 mmol m−2 s−1. This small range was due to the lack of variability in the model parameters (soil(More)
At present a network of over 100 field sites are measuring carbon dioxide, water vapor and sensible heat fluxes between the biosphere and atmosphere, on a nearly continuous basis. Gaps in the long term measurements of evaporation and sensible heat flux must be filled before these data can be used for hydrological and meteorological applications. We adapted(More)
Heightened awareness of global change issues within both science and political communities has increased interest in using the global network of eddy covariance flux towers to more fully understand the impacts of natural and anthropogenic phenomena on the global carbon balance. Comparisons of net ecosystem exchange (FNEE) responses are being made among(More)
Analyzing the major drivers of NEE in an alpine Mediterranean shrubland B. R. Reverter, E. P. Sánchez-Cañete, V. Resco, P. Serrano-Ortiz, C. Oyonarte, and A. S. Kowalski Departamento de Fı́sica Aplicada, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain Grupo de Fı́sica de la Atmósfera, Centro Andaluz de Medio Ambiente(More)
Hexaploid bread wheat evolved from a rare hybridisation, which resulted in a loss of genetic diversity in the wheat D-genome with respect to the ancestral donor, Aegilops tauschii. Novel genetic variation can be introduced into modern wheat by recreating the above hybridisation; however, the information associated with the Ae. tauschii accessions in(More)
Concentrations of nitrogen gases (NH(3), NO(2), NO, HONO and HNO(3)) and particles (pNH(4) and pNO(3)) were measured over a mixed coniferous forest impacted by high nitrogen loads. Nitrogen dioxide (NO(2)) represented the main nitrogen form, followed by nitric oxide (NO) and ammonia (NH(3)). A combination of gradient method (NH(3) and NO(x)) and resistance(More)
This paper provides the first steps toward a regional-scale analysis of carbon (C) budgets. We explore the ability of the ecosystem model BIOME-BGC to estimate the daily and annual C dynamics of four European coniferous forests and shifts in these dynamics in response to changing environmental conditions. We estimate uncertainties in the model results that(More)
As length and timing of the growing season are major factors explaining differences in carbon exchange of ecosystems, we analyzed seasonal patterns of net ecosystem carbon exchange (FNEE) using eddy covariance data of the FLUXNET data base ( The study included boreal and temperate, deciduous and coniferous forests,(More)