Learn More
We have examined posttranslational regulation of clock proteins in mouse liver in vivo. The mouse PERIOD proteins (mPER1 and mPER2), CLOCK, and BMAL1 undergo robust circadian changes in phosphorylation. These proteins, the cryptochromes (mCRY1 and mCRY2), and casein kinase I epsilon (CKIepsilon) form multimeric complexes that are bound to DNA during(More)
Circadian pacemaking requires the orderly synthesis, posttranslational modification, and degradation of clock proteins. In mammals, mutations in casein kinase 1 (CK1) epsilon or delta can alter the circadian period, but the particular functions of the WT isoforms within the pacemaker remain unclear. We selectively targeted WT CK1epsilon and CK1delta using(More)
Csnk1e, the gene encoding casein kinase 1-epsilon, has been implicated in sensitivity to amphetamines. Additionally, a polymorphism in CSNK1E was associated with heroin addiction, suggesting that this gene may also affect opioid sensitivity. In this study, we first conducted genome-wide quantitative trait locus (QTL) mapping of methamphetamine (MA)-induced(More)
Seasonal synchronization based on day length (photoperiod) allows organisms to anticipate environmental change. Photoperiodic decoding relies on circadian clocks, but the underlying molecular pathways have remained elusive [1]. In mammals and birds, photoperiodic responses depend crucially on expression of thyrotrophin β subunit RNA (TSHβ) in the pars(More)
Melatonin-based photoperiod time-measurement and circannual rhythm generation are long-term time-keeping systems used to regulate seasonal cycles in physiology and behaviour in a wide range of mammals including man. We summarise recent evidence that temporal, melatonin-controlled expression of clock genes in specific calendar cells may provide a molecular(More)
In many seasonally breeding rodents, reproduction and metabolism are activated by long summer days (LD) and inhibited by short winter days (SD). After several months of SD, animals become refractory to this inhibitory photoperiod and spontaneously revert to LD-like physiology. The suprachiasmatic nuclei (SCN) house the primary circadian oscillator in(More)
Seasonal mammals commonly exhibit robust annual cycles of adiposity, food intake and energy metabolism. These cycles are driven by changes in the external daylength signal, which generates a diurnal melatonin profile and acts on neuroendocrine pathways. The white adipose tissue hormone leptin reflects overall adiposity in seasonal mammals, and consequently(More)
The tau mutation is a semi-dominant autosomal mutation which, in homozygotes, accelerates the period of the circadian activity cycle by approximately 4 h. In mammals, the circadian system contributes to seasonal photoperiodic time measurement by generating a repeated daily melatonin signal during the hours of darkness. Our earlier studies suggest an altered(More)
Seasonal Siberian hamsters lose fat reserves, decrease body weight and leptin concentrations, and suppress reproduction on short-day photoperiod (SD). Chronic leptin infusion at physiological doses caused body weight and fat loss in SD animals but was ineffective in long-day (LD) hamsters. Using ovariectomized estrogen-treated females, we tested the(More)