Learn More
Self-incompatibility is expressed by nearly one-half of all angiosperms. A large proportion of the remaining species are self-compatible, and they either outcross using various contrivances or self-fertilize to some extent. Because of the common occurrence of populations and individuals with intermediate levels of self-incompatibility, categorization of the(More)
The role of adaptation in the divergence of lineages has long been a central question in evolutionary biology, and as multilocus sequence data sets have become available for a wide range of taxa, empirical estimates of levels of adaptive molecular evolution are increasingly common. Estimates vary widely among taxa, with high levels of adaptive evolution in(More)
Determining the identity and distribution of molecular changes leading to the evolution of modern crop species provides major insights into the timing and nature of historical forces involved in rapid phenotypic evolution. In this study, we employed an integrated candidate gene strategy to identify loci involved in the evolution of flowering time during(More)
Gene duplication provides an important source of genetic raw material for phenotypic diversification, but few studies have detailed the mechanisms through which duplications produce evolutionary novelty within species. Here, we investigate how a set of recently duplicated homologs of the floral inducer FLOWERING LOCUS T (FT) has contributed to sunflower(More)
While speciation can be found in the presence of gene flow, it is not clear what impact this gene flow has on genome- and range-wide patterns of differentiation. Here we examine gene flow across the entire range of the common sunflower, H. annuus, its historically allopatric sister species H. argophyllus and a more distantly related, sympatric relative H.(More)
Species delimitation has long been a difficult and controversial process, and different operational criteria often lead to different results. In particular, investigators using phenotypic vs. molecular data to delineate species may recognize different boundaries, especially if morphologically or ecologically differentiated populations have only recently(More)
  • 1