Andrew R. Price

Learn More
We present the Grid enabled data management system that has been deployed for the GENIE project and demonstrate its use in tuning studies of an Earth system model. A Matlab client to the system provides a common environment for the project Virtual Organization to share scripts, binaries and output data. By using tools available in the Geodise toolkits we(More)
The GENIE project aims to deliver a Grid-based, modular, distributed and scalable Earth System Model for long-term and paleo-climate studies to the environmental sciences community. In this paper we address the scientific problem of the vulnerability of the thermohaline circulation to the global climate, and describe our e-scientific solution using a(More)
The tuning of parameters in climate models is essential to provide reliable long-term forecasts of Earth system behaviour. In this paper we present the first application of the multiobjective non-dominated sorting genetic algorithm (NSGA-II) to the GENIE-1 Earth System Model (ESM). Twelve model parameters are tuned to improve four objective measures of(More)
The integration of computational grids and data grids into a common problem solving environment enables collaboration between members of the GENIEfy project. In addition, state-of-the-art optimisation algorithms complement the component framework to provide a comprehensive toolset for Earth system modelling. In this paper, we present for the first time, the(More)
The tuning of parameters in climate models is essential to provide reliable long-term forecasts of Earth system behaviour. We apply a multi-objective optimization algorithm to the problem of parameter estimation in climate models. This optimization process involves the iterative evaluation of response surface models (RSMs), followed by the execution of(More)